Updated encryption feature to new master -> something totally broke...

This commit is contained in:
Matthias Fulz 2022-06-26 21:36:17 +02:00
parent 410686dc03
commit 43ef5cedf0
19 changed files with 3189 additions and 2 deletions

View File

@ -556,6 +556,17 @@ ifeq ($(strip $(VIA_ENABLE)), yes)
OPT_DEFS += -DVIA_ENABLE
endif
ifeq ($(strip $(ENC_ENABLE)), yes)
RAW_ENABLE := yes
COMMON_VPATH += $(QUANTUM_DIR)/enc
COMMON_VPATH += $(QUANTUM_DIR)/enc/enc_boards
include $(QUANTUM_DIR)/enc/enc_boards/enc_boards.mk
OPT_DEFS += -DENC_ENABLE
SRC += aes.c
SRC += pkcs7_padding.c
SRC += enc.c
endif
VALID_MAGIC_TYPES := yes
BOOTMAGIC_ENABLE ?= no
ifneq ($(strip $(BOOTMAGIC_ENABLE)), no)

View File

@ -11,7 +11,8 @@ BUILD_OPTION_NAMES = \
SPLIT_KEYBOARD \
DYNAMIC_KEYMAP_ENABLE \
USB_HID_ENABLE \
VIA_ENABLE
VIA_ENABLE \
ENC_ENABLE
HARDWARE_OPTION_NAMES = \
SLEEP_LED_ENABLE \

572
quantum/enc/aes.c Normal file
View File

@ -0,0 +1,572 @@
/*
This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.
The implementation is verified against the test vectors in:
National Institute of Standards and Technology Special Publication 800-38A 2001 ED
ECB-AES128
----------
plain-text:
6bc1bee22e409f96e93d7e117393172a
ae2d8a571e03ac9c9eb76fac45af8e51
30c81c46a35ce411e5fbc1191a0a52ef
f69f2445df4f9b17ad2b417be66c3710
key:
2b7e151628aed2a6abf7158809cf4f3c
resulting cipher
3ad77bb40d7a3660a89ecaf32466ef97
f5d3d58503b9699de785895a96fdbaaf
43b1cd7f598ece23881b00e3ed030688
7b0c785e27e8ad3f8223207104725dd4
NOTE: String length must be evenly divisible by 16byte (str_len % 16 == 0)
You should pad the end of the string with zeros if this is not the case.
For AES192/256 the key size is proportionally larger.
*/
/*****************************************************************************/
/* Includes: */
/*****************************************************************************/
#include <string.h> // CBC mode, for memset
#include "aes.h"
/*****************************************************************************/
/* Defines: */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4
#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define Nr 14
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define Nr 12
#else
#define Nk 4 // The number of 32 bit words in a key.
#define Nr 10 // The number of rounds in AES Cipher.
#endif
// jcallan@github points out that declaring Multiply as a function
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
#endif
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
/*****************************************************************************/
/* Private functions: */
/*****************************************************************************/
/*
static uint8_t getSBoxValue(uint8_t num)
{
return sbox[num];
}
*/
#define getSBoxValue(num) (sbox[(num)])
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
{
k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
}
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
#if defined(AES256) && (AES256 == 1)
if (i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
#endif
j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
#endif
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{
uint8_t i,j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{
return (((y & 1) * x) ^
((y>>1 & 1) * xtime(x)) ^
((y>>2 & 1) * xtime(xtime(x))) ^
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#endif
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
/*
static uint8_t getSBoxInvert(uint8_t num)
{
return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without MixColumns()
for (round = 1; ; ++round)
{
SubBytes(state);
ShiftRows(state);
if (round == Nr) {
break;
}
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
// Add round key to last round
AddRoundKey(Nr, state, RoundKey);
}
#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without InvMixColumn()
for (round = (Nr - 1); ; --round)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
if (round == 0) {
break;
}
InvMixColumns(state);
}
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
/*****************************************************************************/
/* Public functions: */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher((state_t*)buf, ctx->RoundKey);
}
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call decrypts the PlainText with the Key using AES algorithm.
InvCipher((state_t*)buf, ctx->RoundKey);
}
#endif // #if defined(ECB) && (ECB == 1)
#if defined(CBC) && (CBC == 1)
static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
{
uint8_t i;
for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, size_t length)
{
size_t i;
uint8_t *Iv = ctx->Iv;
for (i = 0; i < length; i += AES_BLOCKLEN)
{
XorWithIv(buf, Iv);
Cipher((state_t*)buf, ctx->RoundKey);
Iv = buf;
buf += AES_BLOCKLEN;
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{
size_t i;
uint8_t storeNextIv[AES_BLOCKLEN];
for (i = 0; i < length; i += AES_BLOCKLEN)
{
memcpy(storeNextIv, buf, AES_BLOCKLEN);
InvCipher((state_t*)buf, ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
buf += AES_BLOCKLEN;
}
}
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{
uint8_t buffer[AES_BLOCKLEN];
size_t i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
{
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
{
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t*)buffer,ctx->RoundKey);
/* Increment Iv and handle overflow */
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
{
/* inc will overflow */
if (ctx->Iv[bi] == 255)
{
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}
#endif // #if defined(CTR) && (CTR == 1)

91
quantum/enc/aes.h Normal file
View File

@ -0,0 +1,91 @@
#ifndef _AES_H_
#define _AES_H_
#include <stdint.h>
#include <stddef.h>
// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.
// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif
#ifndef ECB
#define ECB 1
#endif
#ifndef CTR
#define CTR 1
#endif
//#define AES128 1
//#define AES192 1
#define AES256 1
#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only
#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16 // Key length in bytes
#define AES_keyExpSize 176
#endif
struct AES_ctx
{
uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
uint8_t Iv[AES_BLOCKLEN];
#endif
};
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif
#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes;
// you need only AES_init_ctx as IV is not used in ECB
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);
#endif // #if defined(ECB) && (ECB == !)
#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
#endif // #if defined(CBC) && (CBC == 1)
#if defined(CTR) && (CTR == 1)
// Same function for encrypting as for decrypting.
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
#endif // #if defined(CTR) && (CTR == 1)
#endif // _AES_H_

1250
quantum/enc/enc.c Normal file

File diff suppressed because it is too large Load Diff

165
quantum/enc/enc.h Normal file
View File

@ -0,0 +1,165 @@
#pragma once
#include "quantum.h"
#include <stdint.h>
#define CBC 1
#define ENC_ERR_OK 0x00
#define ENC_ERR_EMPTY_BUF 0x01
#define ENC_ERR_NO_CTX 0x02
#define ENC_ERR_NOT_ALLOWED 0x03
#define ENC_ERR_INVALID 0x04
#define ENC_ERR_RETRY 0x05
#define ENC_ERR_HW_SUPPORT 0x06
#define ENC_ERR_MORE_DATA 0x07
#define ENC_CMD_RESET 0x00
#define ENC_CMD_ENCRYPT 0x01
#define ENC_CMD_DECRYPT 0x02
#define ENC_CMD_MORE_DATA 0x03
#define ENC_CMD_UNLOCK 0x04
#define ENC_CMD_LOCK 0x05
#define ENC_CMD_SET_CFG 0x06
#define ENC_CMD_GET_MODE 0x07
#define ENC_CMD_GET_BUFFER 0x08
#define ENC_CMD_GET_KEYS 0x09
#define ENC_CMD_GET_BUFSIZE 0x0A
#define ENC_CMD_SET_KEYS 0x0B
#define ENC_CMD_GET_CFG 0x0C
#define ENC_CMD_INITIALIZE 0x0D
#define ENC_CMD_NONE 0x0E
#define ENC_CMD_SET_BUFFER 0x0F
#define ENC_MODE_CLOSED 0x00
#define ENC_MODE_OPEN 0x01
#define ENC_MODE_LOAD 0x02
#define ENC_MODE_INIT 0x03
#define ENC_SUB_MODE_NONE 0x00
#define ENC_SUB_MODE_SEED 0x01
#define ENC_SUB_MODE_PASSWORD 0x02
#define ENC_SUB_MODE_VERIFY_PASSWORD 0x03
#define ENC_SUB_MODE_REQUEST 0x04
#define ENC_SUB_MODE_REQUEST_ALLOW 0x05
#define ENC_SUB_MODE_REQUEST_DENY 0x06
#define ENC_CFG_PARANOIA 0x00
#define ENC_CFG_SECURE 0x01
#define ENC_CFG_MAX_ERROR 0x02
#define ENC_CFG_TIMEOUT 0x03
#define ENC_FALSE 0x00
#define ENC_TRUE 0x01
#define ENC_EEPROM_SIZE 123
#ifdef VIA_ENABLE
# include "via.h"
# define ENC_EEPROM_ADDR (VIA_EEPROM_CUSTOM_CONFIG_ADDR - ENC_EEPROM_SIZE)
#else
# include "eeconfig.h"
# define ENC_EEPROM_ADDR (EECONFIG_SIZE)
#endif
typedef struct __attribute__((packed)) {
unsigned int max_error:4;
unsigned int error_count:4;
unsigned int paranoia_mode:1;
unsigned int secure_mode:1;
unsigned int timeout:6;
unsigned int initialized:1;
unsigned int reserved:7;
} enc_config_flags_t;
typedef struct __attribute__((packed)) {
enc_config_flags_t flags;
uint8_t identifier[8];
uint8_t salt[16];
uint8_t validate[32];
uint8_t key_store[64];
} enc_config_t;
typedef struct __attribute__((packed)) {
uint32_t seed;
uint8_t key[32];
} enc_keys_t;
typedef struct {
uint8_t mode;
uint8_t sub_mode;
uint32_t pw_timeout;
bool pw_timeout_enabled;
uint8_t req_cmd;
uint32_t req_timeout;
bool req_timeout_enabled;
} enc_mode_t;
typedef struct {
uint16_t pw[32];
uint16_t pw_check[32];
uint16_t pw_size;
uint16_t pw_check_pos;
bool pw_ready;
uint32_t seed;
bool seed_ready;
uint32_t pw_timer;
uint32_t req_timer;
bool cfg_ready;
} enc_state_t;
typedef struct {
enc_mode_t mode;
enc_config_t cnf;
enc_keys_t keys;
enc_state_t state;
} ENC_CTX;
#define ENC_REQUEST_HEADER_LEN 9
#define ENC_RESPONSE_HEADER_POS_SIZE 1
#define ENC_RESPONSE_HEADER_LEN 3
typedef struct __attribute__((packed)) {
uint8_t magic[2];
uint8_t cmd;
uint16_t size;
uint32_t id;
} enc_request_header_t;
typedef struct {
uint8_t *data;
uint16_t dsize;
uint16_t dpos;
} enc_data_buffer_t;
typedef struct {
enc_request_header_t req_header;
enc_data_buffer_t data;
uint8_t req_cmd;
uint32_t req_id;
uint8_t state_cmd;
uint8_t state_cmd_old;
uint8_t *res_data;
uint32_t req_timer;
} enc_request_state_t;
#define ENC_HID_REQUEST_TIMEOUT 30
// Called by QMK core to process ENC-specific keycodes.
bool process_record_enc(uint16_t keycode, keyrecord_t *record);
// called to allow having config ready instantly
void pre_init_enc(void);
void eeconfig_init_enc(void);
enc_config_flags_t enc_get_config_flags(void);
void enc_set_config_flags(enc_config_flags_t);
enc_mode_t enc_get_mode(void);
void enc_set_mode(enc_mode_t);
const char* enc_mode_to_str(uint8_t mode);
const char* enc_sub_mode_to_str(uint8_t mode);
const char* enc_cmd_to_str(uint8_t cmd);
void enc_write_oled(bool invert);

View File

@ -0,0 +1,14 @@
#pragma once
#ifdef ENC_OPTLOCK
# undef ENC_OPTLOCK
#endif
#if defined(STM32F401xx) || defined(STMF411xx)
# define ENC_OPTLOCK
#endif
#ifdef ENC_OPTLOCK
void enc_flash_lock(void);
int enc_is_flash_locked(void);
#endif

View File

@ -0,0 +1,3 @@
ifneq ($(filter %_STM32F401xC %_STM32F401xE %_STM32F405xG %_STM32F411xE, %_STM32F412xB, $(MCU_SERIES)_$(MCU_LDSCRIPT)),)
SRC += enc_stm32f40xx_stm32f41xx.c
endif

View File

@ -0,0 +1,51 @@
#include "hal.h"
#include "enc.h"
#define FLASH_OPTKEY1 0x08192A3B
#define FLASH_OPTKEY2 0x4C5D6E7F
static inline void OPT_WaitNotBusy(void) {
uint32_t sr = 0;
for (sr = FLASH->SR; sr & FLASH_SR_BSY; sr = FLASH->SR) {
__WFI();
}
}
static inline void OPT_Unlock(void) {
OPT_WaitNotBusy();
if (FLASH->OPTCR & FLASH_OPTCR_OPTLOCK) {
FLASH->OPTKEYR = FLASH_OPTKEY1;
FLASH->OPTKEYR = FLASH_OPTKEY2;
}
}
static inline void OPT_Lock(void) {
OPT_WaitNotBusy();
FLASH->OPTCR |= FLASH_OPTCR_OPTLOCK;
}
static inline void OPT_Set(uint32_t OptionBytes) {
__IO uint32_t *optionBytes = &(FLASH->OPTCR);
if (*optionBytes != OptionBytes) {
OPT_Unlock();
*optionBytes = OptionBytes;
FLASH->OPTCR |= FLASH_OPTCR_OPTSTRT;
OPT_Lock();
/*NVIC_SystemReset();*/
}
}
bool enc_is_flash_locked(void) {
if (FLASH->OPTCR & FLASH_OPTCR_RDP) {
return ENC_TRUE;
}
return ENC_FALSE;
}
void enc_flash_lock(void) {
OPT_Unlock();
FLASH->OPTCR |= FLASH_OPTCR_RDP;
FLASH->OPTCR |= FLASH_OPTCR_OPTSTRT;
OPT_Lock();
/*NVIC_SystemReset();*/
}

855
quantum/enc/pbkdf2-sha256.h Normal file
View File

@ -0,0 +1,855 @@
/*
* FIPS-180-2 compliant SHA-256 implementation
*
* Copyright (C) 2006-2010, Brainspark B.V.
*
* This file is part of PolarSSL (http://www.polarssl.org)
* Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/*
* The SHA-256 Secure Hash Standard was published by NIST in 2002.
*
* http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
typedef struct {
unsigned long total[2]; /*!< number of bytes processed */
unsigned long state[8]; /*!< intermediate digest state */
unsigned char buffer[64]; /*!< data block being processed */
unsigned char ipad[64]; /*!< HMAC: inner padding */
unsigned char opad[64]; /*!< HMAC: outer padding */
int is224; /*!< 0 => SHA-256, else SHA-224 */
} sha2_context;
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_ULONG_BE
#define GET_ULONG_BE(n,b,i) \
{ \
(n) = ( (unsigned long) (b)[(i) ] << 24 ) \
| ( (unsigned long) (b)[(i) + 1] << 16 ) \
| ( (unsigned long) (b)[(i) + 2] << 8 ) \
| ( (unsigned long) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_ULONG_BE
#define PUT_ULONG_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
/*
* SHA-256 context setup
*/
void sha2_starts( sha2_context *ctx, int is224 )
{
ctx->total[0] = 0;
ctx->total[1] = 0;
if( is224 == 0 )
{
/* SHA-256 */
ctx->state[0] = 0x6A09E667;
ctx->state[1] = 0xBB67AE85;
ctx->state[2] = 0x3C6EF372;
ctx->state[3] = 0xA54FF53A;
ctx->state[4] = 0x510E527F;
ctx->state[5] = 0x9B05688C;
ctx->state[6] = 0x1F83D9AB;
ctx->state[7] = 0x5BE0CD19;
}
else
{
/* SHA-224 */
ctx->state[0] = 0xC1059ED8;
ctx->state[1] = 0x367CD507;
ctx->state[2] = 0x3070DD17;
ctx->state[3] = 0xF70E5939;
ctx->state[4] = 0xFFC00B31;
ctx->state[5] = 0x68581511;
ctx->state[6] = 0x64F98FA7;
ctx->state[7] = 0xBEFA4FA4;
}
ctx->is224 = is224;
}
static void sha2_process( sha2_context *ctx, const unsigned char data[64] )
{
unsigned long temp1, temp2, W[64];
unsigned long A, B, C, D, E, F, G, H;
GET_ULONG_BE( W[ 0], data, 0 );
GET_ULONG_BE( W[ 1], data, 4 );
GET_ULONG_BE( W[ 2], data, 8 );
GET_ULONG_BE( W[ 3], data, 12 );
GET_ULONG_BE( W[ 4], data, 16 );
GET_ULONG_BE( W[ 5], data, 20 );
GET_ULONG_BE( W[ 6], data, 24 );
GET_ULONG_BE( W[ 7], data, 28 );
GET_ULONG_BE( W[ 8], data, 32 );
GET_ULONG_BE( W[ 9], data, 36 );
GET_ULONG_BE( W[10], data, 40 );
GET_ULONG_BE( W[11], data, 44 );
GET_ULONG_BE( W[12], data, 48 );
GET_ULONG_BE( W[13], data, 52 );
GET_ULONG_BE( W[14], data, 56 );
GET_ULONG_BE( W[15], data, 60 );
#define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
#define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
#define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
#define XF0(x,y,z) ((x & y) | (z & (x | y)))
#define XF1(x,y,z) (z ^ (x & (y ^ z)))
#define R(t) \
( \
W[t] = S1(W[t - 2]) + W[t - 7] + \
S0(W[t - 15]) + W[t - 16] \
)
#define P(a,b,c,d,e,f,g,h,x,K) \
{ \
temp1 = h + S3(e) + XF1(e,f,g) + K + x; \
temp2 = S2(a) + XF0(a,b,c); \
d += temp1; h = temp1 + temp2; \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
F = ctx->state[5];
G = ctx->state[6];
H = ctx->state[7];
P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98 );
P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491 );
P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF );
P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5 );
P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B );
P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1 );
P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4 );
P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5 );
P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98 );
P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01 );
P( G, H, A, B, C, D, E, F, W[10], 0x243185BE );
P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3 );
P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74 );
P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE );
P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7 );
P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174 );
P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1 );
P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786 );
P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6 );
P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC );
P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F );
P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA );
P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC );
P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA );
P( A, B, C, D, E, F, G, H, R(24), 0x983E5152 );
P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D );
P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8 );
P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7 );
P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3 );
P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147 );
P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351 );
P( B, C, D, E, F, G, H, A, R(31), 0x14292967 );
P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85 );
P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138 );
P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC );
P( F, G, H, A, B, C, D, E, R(35), 0x53380D13 );
P( E, F, G, H, A, B, C, D, R(36), 0x650A7354 );
P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB );
P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E );
P( B, C, D, E, F, G, H, A, R(39), 0x92722C85 );
P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1 );
P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B );
P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70 );
P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3 );
P( E, F, G, H, A, B, C, D, R(44), 0xD192E819 );
P( D, E, F, G, H, A, B, C, R(45), 0xD6990624 );
P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585 );
P( B, C, D, E, F, G, H, A, R(47), 0x106AA070 );
P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116 );
P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08 );
P( G, H, A, B, C, D, E, F, R(50), 0x2748774C );
P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5 );
P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3 );
P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A );
P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F );
P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3 );
P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE );
P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F );
P( G, H, A, B, C, D, E, F, R(58), 0x84C87814 );
P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208 );
P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA );
P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB );
P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7 );
P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2 );
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
ctx->state[5] += F;
ctx->state[6] += G;
ctx->state[7] += H;
}
/*
* SHA-256 process buffer
*/
void sha2_update( sha2_context *ctx, const unsigned char *input, size_t ilen )
{
size_t fill;
unsigned long left;
if( ilen <= 0 )
return;
left = ctx->total[0] & 0x3F;
fill = 64 - left;
ctx->total[0] += (unsigned long) ilen;
ctx->total[0] &= 0xFFFFFFFF;
if( ctx->total[0] < (unsigned long) ilen )
ctx->total[1]++;
if( left && ilen >= fill )
{
memcpy( (void *) (ctx->buffer + left),
(void *) input, fill );
sha2_process( ctx, ctx->buffer );
input += fill;
ilen -= fill;
left = 0;
}
while( ilen >= 64 )
{
sha2_process( ctx, input );
input += 64;
ilen -= 64;
}
if( ilen > 0 )
{
memcpy( (void *) (ctx->buffer + left),
(void *) input, ilen );
}
}
static const unsigned char sha2_padding[64] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* SHA-256 final digest
*/
void sha2_finish( sha2_context *ctx, unsigned char output[32] )
{
unsigned long last, padn;
unsigned long high, low;
unsigned char msglen[8];
high = ( ctx->total[0] >> 29 )
| ( ctx->total[1] << 3 );
low = ( ctx->total[0] << 3 );
PUT_ULONG_BE( high, msglen, 0 );
PUT_ULONG_BE( low, msglen, 4 );
last = ctx->total[0] & 0x3F;
padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
sha2_update( ctx, (unsigned char *) sha2_padding, padn );
sha2_update( ctx, msglen, 8 );
PUT_ULONG_BE( ctx->state[0], output, 0 );
PUT_ULONG_BE( ctx->state[1], output, 4 );
PUT_ULONG_BE( ctx->state[2], output, 8 );
PUT_ULONG_BE( ctx->state[3], output, 12 );
PUT_ULONG_BE( ctx->state[4], output, 16 );
PUT_ULONG_BE( ctx->state[5], output, 20 );
PUT_ULONG_BE( ctx->state[6], output, 24 );
if( ctx->is224 == 0 )
PUT_ULONG_BE( ctx->state[7], output, 28 );
}
/*
* output = SHA-256( input buffer )
*/
void sha2( const unsigned char *input, size_t ilen,
unsigned char output[32], int is224 )
{
sha2_context ctx;
sha2_starts( &ctx, is224 );
sha2_update( &ctx, input, ilen );
sha2_finish( &ctx, output );
memset( &ctx, 0, sizeof( sha2_context ) );
}
/*
* SHA-256 HMAC context setup
*/
void sha2_hmac_starts( sha2_context *ctx, const unsigned char *key, size_t keylen,
int is224 )
{
size_t i;
unsigned char sum[32];
if( keylen > 64 )
{
sha2( key, keylen, sum, is224 );
keylen = ( is224 ) ? 28 : 32;
key = sum;
}
memset( ctx->ipad, 0x36, 64 );
memset( ctx->opad, 0x5C, 64 );
for( i = 0; i < keylen; i++ )
{
ctx->ipad[i] = (unsigned char)( ctx->ipad[i] ^ key[i] );
ctx->opad[i] = (unsigned char)( ctx->opad[i] ^ key[i] );
}
sha2_starts( ctx, is224 );
sha2_update( ctx, ctx->ipad, 64 );
memset( sum, 0, sizeof( sum ) );
}
/*
* SHA-256 HMAC process buffer
*/
void sha2_hmac_update( sha2_context *ctx, const unsigned char *input, size_t ilen )
{
sha2_update( ctx, input, ilen );
}
/*
* SHA-256 HMAC final digest
*/
void sha2_hmac_finish( sha2_context *ctx, unsigned char output[32] )
{
int is224, hlen;
unsigned char tmpbuf[32];
is224 = ctx->is224;
hlen = ( is224 == 0 ) ? 32 : 28;
sha2_finish( ctx, tmpbuf );
sha2_starts( ctx, is224 );
sha2_update( ctx, ctx->opad, 64 );
sha2_update( ctx, tmpbuf, hlen );
sha2_finish( ctx, output );
memset( tmpbuf, 0, sizeof( tmpbuf ) );
}
/*
* SHA-256 HMAC context reset
*/
void sha2_hmac_reset( sha2_context *ctx )
{
sha2_starts( ctx, ctx->is224 );
sha2_update( ctx, ctx->ipad, 64 );
}
/*
* output = HMAC-SHA-256( hmac key, input buffer )
*/
void sha2_hmac( const unsigned char *key, size_t keylen,
const unsigned char *input, size_t ilen,
unsigned char output[32], int is224 )
{
sha2_context ctx;
sha2_hmac_starts( &ctx, key, keylen, is224 );
sha2_hmac_update( &ctx, input, ilen );
sha2_hmac_finish( &ctx, output );
memset( &ctx, 0, sizeof( sha2_context ) );
}
#ifndef min
#define min( a, b ) ( ((a) < (b)) ? (a) : (b) )
#endif
void PKCS5_PBKDF2_HMAC(unsigned char *password, size_t plen,
unsigned char *salt, size_t slen,
const unsigned long iteration_count, const unsigned long key_length,
unsigned char *output)
{
sha2_context ctx;
sha2_starts(&ctx, 0);
// Size of the generated digest
unsigned char md_size = 32;
unsigned char md1[32];
unsigned char work[32];
unsigned long counter = 1;
unsigned long generated_key_length = 0;
while (generated_key_length < key_length) {
// U1 ends up in md1 and work
unsigned char c[4];
c[0] = (counter >> 24) & 0xff;
c[1] = (counter >> 16) & 0xff;
c[2] = (counter >> 8) & 0xff;
c[3] = (counter >> 0) & 0xff;
sha2_hmac_starts(&ctx, password, plen, 0);
sha2_hmac_update(&ctx, salt, slen);
sha2_hmac_update(&ctx, c, 4);
sha2_hmac_finish(&ctx, md1);
memcpy(work, md1, md_size);
unsigned long ic = 1;
for (ic = 1; ic < iteration_count; ic++) {
// U2 ends up in md1
sha2_hmac_starts(&ctx, password, plen, 0);
sha2_hmac_update(&ctx, md1, md_size);
sha2_hmac_finish(&ctx, md1);
// U1 xor U2
unsigned long i = 0;
for (i = 0; i < md_size; i++) {
work[i] ^= md1[i];
}
// and so on until iteration_count
}
// Copy the generated bytes to the key
unsigned long bytes_to_write =
min((key_length - generated_key_length), md_size);
memcpy(output + generated_key_length, work, bytes_to_write);
generated_key_length += bytes_to_write;
++counter;
}
}
#ifdef TEST
/*
* FIPS-180-2 test vectors
*/
static unsigned char sha2_test_buf[3][57] =
{
{ "abc" },
{ "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
{ "" }
};
static const int sha2_test_buflen[3] =
{
3, 56, 1000
};
static const unsigned char sha2_test_sum[6][32] =
{
/*
* SHA-224 test vectors
*/
{ 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22,
0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3,
0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7,
0xE3, 0x6C, 0x9D, 0xA7 },
{ 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC,
0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50,
0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19,
0x52, 0x52, 0x25, 0x25 },
{ 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8,
0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B,
0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE,
0x4E, 0xE7, 0xAD, 0x67 },
/*
* SHA-256 test vectors
*/
{ 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD },
{ 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 },
{ 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92,
0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67,
0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E,
0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 }
};
/*
* RFC 4231 test vectors
*/
static unsigned char sha2_hmac_test_key[7][26] = {
{"\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B\x0B"
"\x0B\x0B\x0B\x0B"},
{"Jefe"},
{"\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA"
"\xAA\xAA\xAA\xAA"},
{"\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F\x10"
"\x11\x12\x13\x14\x15\x16\x17\x18\x19"},
{"\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C\x0C"
"\x0C\x0C\x0C\x0C"},
{""}, /* 0xAA 131 times */
{""}
};
static const int sha2_hmac_test_keylen[7] = {
20, 4, 20, 25, 20, 131, 131
};
static unsigned char sha2_hmac_test_buf[7][153] =
{
{ "Hi There" },
{ "what do ya want for nothing?" },
{ "\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
"\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
"\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
"\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD"
"\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD\xDD" },
{ "\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
"\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
"\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
"\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD"
"\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD\xCD" },
{ "Test With Truncation" },
{ "Test Using Larger Than Block-Size Key - Hash Key First" },
{ "This is a test using a larger than block-size key "
"and a larger than block-size data. The key needs to "
"be hashed before being used by the HMAC algorithm." }
};
static const int sha2_hmac_test_buflen[7] =
{
8, 28, 50, 50, 20, 54, 152
};
static const unsigned char sha2_hmac_test_sum[14][32] =
{
/*
* HMAC-SHA-224 test vectors
*/
{ 0x89, 0x6F, 0xB1, 0x12, 0x8A, 0xBB, 0xDF, 0x19,
0x68, 0x32, 0x10, 0x7C, 0xD4, 0x9D, 0xF3, 0x3F,
0x47, 0xB4, 0xB1, 0x16, 0x99, 0x12, 0xBA, 0x4F,
0x53, 0x68, 0x4B, 0x22 },
{ 0xA3, 0x0E, 0x01, 0x09, 0x8B, 0xC6, 0xDB, 0xBF,
0x45, 0x69, 0x0F, 0x3A, 0x7E, 0x9E, 0x6D, 0x0F,
0x8B, 0xBE, 0xA2, 0xA3, 0x9E, 0x61, 0x48, 0x00,
0x8F, 0xD0, 0x5E, 0x44 },
{ 0x7F, 0xB3, 0xCB, 0x35, 0x88, 0xC6, 0xC1, 0xF6,
0xFF, 0xA9, 0x69, 0x4D, 0x7D, 0x6A, 0xD2, 0x64,
0x93, 0x65, 0xB0, 0xC1, 0xF6, 0x5D, 0x69, 0xD1,
0xEC, 0x83, 0x33, 0xEA },
{ 0x6C, 0x11, 0x50, 0x68, 0x74, 0x01, 0x3C, 0xAC,
0x6A, 0x2A, 0xBC, 0x1B, 0xB3, 0x82, 0x62, 0x7C,
0xEC, 0x6A, 0x90, 0xD8, 0x6E, 0xFC, 0x01, 0x2D,
0xE7, 0xAF, 0xEC, 0x5A },
{ 0x0E, 0x2A, 0xEA, 0x68, 0xA9, 0x0C, 0x8D, 0x37,
0xC9, 0x88, 0xBC, 0xDB, 0x9F, 0xCA, 0x6F, 0xA8 },
{ 0x95, 0xE9, 0xA0, 0xDB, 0x96, 0x20, 0x95, 0xAD,
0xAE, 0xBE, 0x9B, 0x2D, 0x6F, 0x0D, 0xBC, 0xE2,
0xD4, 0x99, 0xF1, 0x12, 0xF2, 0xD2, 0xB7, 0x27,
0x3F, 0xA6, 0x87, 0x0E },
{ 0x3A, 0x85, 0x41, 0x66, 0xAC, 0x5D, 0x9F, 0x02,
0x3F, 0x54, 0xD5, 0x17, 0xD0, 0xB3, 0x9D, 0xBD,
0x94, 0x67, 0x70, 0xDB, 0x9C, 0x2B, 0x95, 0xC9,
0xF6, 0xF5, 0x65, 0xD1 },
/*
* HMAC-SHA-256 test vectors
*/
{ 0xB0, 0x34, 0x4C, 0x61, 0xD8, 0xDB, 0x38, 0x53,
0x5C, 0xA8, 0xAF, 0xCE, 0xAF, 0x0B, 0xF1, 0x2B,
0x88, 0x1D, 0xC2, 0x00, 0xC9, 0x83, 0x3D, 0xA7,
0x26, 0xE9, 0x37, 0x6C, 0x2E, 0x32, 0xCF, 0xF7 },
{ 0x5B, 0xDC, 0xC1, 0x46, 0xBF, 0x60, 0x75, 0x4E,
0x6A, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xC7,
0x5A, 0x00, 0x3F, 0x08, 0x9D, 0x27, 0x39, 0x83,
0x9D, 0xEC, 0x58, 0xB9, 0x64, 0xEC, 0x38, 0x43 },
{ 0x77, 0x3E, 0xA9, 0x1E, 0x36, 0x80, 0x0E, 0x46,
0x85, 0x4D, 0xB8, 0xEB, 0xD0, 0x91, 0x81, 0xA7,
0x29, 0x59, 0x09, 0x8B, 0x3E, 0xF8, 0xC1, 0x22,
0xD9, 0x63, 0x55, 0x14, 0xCE, 0xD5, 0x65, 0xFE },
{ 0x82, 0x55, 0x8A, 0x38, 0x9A, 0x44, 0x3C, 0x0E,
0xA4, 0xCC, 0x81, 0x98, 0x99, 0xF2, 0x08, 0x3A,
0x85, 0xF0, 0xFA, 0xA3, 0xE5, 0x78, 0xF8, 0x07,
0x7A, 0x2E, 0x3F, 0xF4, 0x67, 0x29, 0x66, 0x5B },
{ 0xA3, 0xB6, 0x16, 0x74, 0x73, 0x10, 0x0E, 0xE0,
0x6E, 0x0C, 0x79, 0x6C, 0x29, 0x55, 0x55, 0x2B },
{ 0x60, 0xE4, 0x31, 0x59, 0x1E, 0xE0, 0xB6, 0x7F,
0x0D, 0x8A, 0x26, 0xAA, 0xCB, 0xF5, 0xB7, 0x7F,
0x8E, 0x0B, 0xC6, 0x21, 0x37, 0x28, 0xC5, 0x14,
0x05, 0x46, 0x04, 0x0F, 0x0E, 0xE3, 0x7F, 0x54 },
{ 0x9B, 0x09, 0xFF, 0xA7, 0x1B, 0x94, 0x2F, 0xCB,
0x27, 0x63, 0x5F, 0xBC, 0xD5, 0xB0, 0xE9, 0x44,
0xBF, 0xDC, 0x63, 0x64, 0x4F, 0x07, 0x13, 0x93,
0x8A, 0x7F, 0x51, 0x53, 0x5C, 0x3A, 0x35, 0xE2 }
};
typedef struct {
char *t;
char *p;
int plen;
char *s;
int slen;
int c;
int dkLen;
char dk[1024]; // Remember to set this to max dkLen
} testvector;
int do_test(testvector * tv)
{
printf("Started %s\n", tv->t);
fflush(stdout);
char *key = malloc(tv->dkLen);
if (key == 0) {
return -1;
}
PKCS5_PBKDF2_HMAC((unsigned char*)tv->p, tv->plen,
(unsigned char*)tv->s, tv->slen, tv->c,
tv->dkLen, (unsigned char*)key);
if (memcmp(tv->dk, key, tv->dkLen) != 0) {
// Failed
return -1;
}
return 0;
}
/*
* Checkup routine
*/
int main()
{
int verbose = 1;
int i, j, k, buflen;
unsigned char buf[1024];
unsigned char sha2sum[32];
sha2_context ctx;
for (i = 0; i < 6; i++) {
j = i % 3;
k = i < 3;
if (verbose != 0)
printf(" SHA-%d test #%d: ", 256 - k * 32, j + 1);
sha2_starts(&ctx, k);
if (j == 2) {
memset(buf, 'a', buflen = 1000);
for (j = 0; j < 1000; j++)
sha2_update(&ctx, buf, buflen);
} else
sha2_update(&ctx, sha2_test_buf[j],
sha2_test_buflen[j]);
sha2_finish(&ctx, sha2sum);
if (memcmp(sha2sum, sha2_test_sum[i], 32 - k * 4) != 0) {
if (verbose != 0)
printf("failed\n");
return (1);
}
if (verbose != 0)
printf("passed\n");
}
if (verbose != 0)
printf("\n");
for (i = 0; i < 14; i++) {
j = i % 7;
k = i < 7;
if (verbose != 0)
printf(" HMAC-SHA-%d test #%d: ", 256 - k * 32,
j + 1);
if (j == 5 || j == 6) {
memset(buf, '\xAA', buflen = 131);
sha2_hmac_starts(&ctx, buf, buflen, k);
} else
sha2_hmac_starts(&ctx, sha2_hmac_test_key[j],
sha2_hmac_test_keylen[j], k);
sha2_hmac_update(&ctx, sha2_hmac_test_buf[j],
sha2_hmac_test_buflen[j]);
sha2_hmac_finish(&ctx, sha2sum);
buflen = (j == 4) ? 16 : 32 - k * 4;
if (memcmp(sha2sum, sha2_hmac_test_sum[i], buflen) != 0) {
if (verbose != 0)
printf("failed\n");
return (1);
}
if (verbose != 0)
printf("passed\n");
}
if (verbose != 0)
printf("\n");
testvector *tv = 0;
int res = 0;
testvector t1 = {
"Test 1",
"password", 8, "salt", 4, 1, 32,
.dk = { 0x12, 0x0f, 0xb6, 0xcf, 0xfc, 0xf8, 0xb3, 0x2c,
0x43, 0xe7, 0x22, 0x52, 0x56, 0xc4, 0xf8, 0x37,
0xa8, 0x65, 0x48, 0xc9, 0x2c, 0xcc, 0x35, 0x48,
0x08, 0x05, 0x98, 0x7c, 0xb7, 0x0b, 0xe1, 0x7b }
};
tv = &t1;
res = do_test(tv);
if (res != 0) {
printf("%s failed\n", tv->t);
return res;
}
testvector t2 = {
"Test 2",
"password", 8, "salt", 4, 2, 32, {
0xae, 0x4d, 0x0c, 0x95, 0xaf, 0x6b, 0x46, 0xd3,
0x2d, 0x0a, 0xdf, 0xf9, 0x28, 0xf0, 0x6d, 0xd0,
0x2a, 0x30, 0x3f, 0x8e, 0xf3, 0xc2, 0x51, 0xdf,
0xd6, 0xe2, 0xd8, 0x5a, 0x95, 0x47, 0x4c, 0x43 }
};
tv = &t2;
res = do_test(tv);
if (res != 0) {
printf("%s failed\n", tv->t);
return res;
}
testvector t3 = {
"Test 3",
"password", 8, "salt", 4, 4096, 32, {
0xc5, 0xe4, 0x78, 0xd5, 0x92, 0x88, 0xc8, 0x41,
0xaa, 0x53, 0x0d, 0xb6, 0x84, 0x5c, 0x4c, 0x8d,
0x96, 0x28, 0x93, 0xa0, 0x01, 0xce, 0x4e, 0x11,
0xa4, 0x96, 0x38, 0x73, 0xaa, 0x98, 0x13, 0x4a }
};
tv = &t3;
res = do_test(tv);
if (res != 0) {
printf("%s failed\n", tv->t);
return res;
}
testvector t4 = {
"Test 4",
"password", 8, "salt", 4, 16777216, 32, {
0xcf, 0x81, 0xc6, 0x6f, 0xe8, 0xcf, 0xc0, 0x4d,
0x1f, 0x31, 0xec, 0xb6, 0x5d, 0xab, 0x40, 0x89,
0xf7, 0xf1, 0x79, 0xe8, 0x9b, 0x3b, 0x0b, 0xcb,
0x17, 0xad, 0x10, 0xe3, 0xac, 0x6e, 0xba, 0x46 }
};
tv = &t4;
// res = do_test(tv);
if (res != 0) {
printf("%s failed\n", tv->t);
return res;
}
testvector t5 = {
"Test 5",
"passwordPASSWORDpassword", 24,
"saltSALTsaltSALTsaltSALTsaltSALTsalt", 36, 4096, 40, {
0x34, 0x8c, 0x89, 0xdb, 0xcb, 0xd3, 0x2b, 0x2f,
0x32, 0xd8, 0x14, 0xb8, 0x11, 0x6e, 0x84, 0xcf,
0x2b, 0x17, 0x34, 0x7e, 0xbc, 0x18, 0x00, 0x18,
0x1c, 0x4e, 0x2a, 0x1f, 0xb8, 0xdd, 0x53, 0xe1,
0xc6, 0x35, 0x51, 0x8c, 0x7d, 0xac, 0x47, 0xe9 }
};
tv = &t5;
res = do_test(tv);
if (res != 0) {
printf("%s failed\n", tv->t);
return res;
}
testvector t6 = {
"Test 6",
"pass\0word", 9, "sa\0lt", 5, 4096, 16, {
0x89, 0xb6, 0x9d, 0x05, 0x16, 0xf8, 0x29, 0x89,
0x3c, 0x69, 0x62, 0x26, 0x65, 0x0a, 0x86, 0x87 }
};
tv = &t6;
res = do_test(tv);
if (res != 0) {
printf("%s failed\n", tv->t);
return res;
}
return (0);
}
#endif

View File

@ -0,0 +1,56 @@
#include "pkcs7_padding.h"
int pkcs7_padding_pad_buffer( uint8_t *buffer, size_t data_length, size_t buffer_size, uint8_t modulus ){
uint8_t pad_byte = modulus - ( data_length % modulus ) ;
if( data_length + pad_byte > buffer_size ){
return -pad_byte;
}
int i = 0;
while( i < pad_byte){
buffer[data_length+i] = pad_byte;
i++;
}
return pad_byte;
}
int pkcs7_padding_valid( uint8_t *buffer, size_t data_length, size_t buffer_size, uint8_t modulus ){
uint8_t expected_pad_byte = modulus - ( data_length % modulus ) ;
if( data_length + expected_pad_byte > buffer_size ){
return 0;
}
int i = 0;
while( i < expected_pad_byte ){
if( buffer[data_length + i] != expected_pad_byte){
return 0;
}
i++;
}
return 1;
}
size_t pkcs7_padding_data_length( uint8_t * buffer, size_t buffer_size, uint8_t modulus ){
/* test for valid buffer size */
if( buffer_size % modulus != 0 ||
buffer_size < modulus ){
return 0;
}
uint8_t padding_value;
padding_value = buffer[buffer_size-1];
/* test for valid padding value */
if( padding_value < 1 || padding_value > modulus ){
return 0;
}
/* buffer must be at least padding_value + 1 in size */
if( buffer_size < padding_value + 1 ){
return 0;
}
uint8_t count = 1;
buffer_size --;
for( ; count < padding_value ; count++){
buffer_size --;
if( buffer[buffer_size] != padding_value ){
return 0;
}
}
return buffer_size;
}

View File

@ -0,0 +1,24 @@
#ifndef _PKCS7_PADDING_H_
#define _PKCS7_PADDING_H_
#include <stdint.h>
#include <stddef.h>
/* Pad a buffer with bytes as defined in PKCS#7
* Returns the number of pad bytes added, or zero if
* the buffer size is not large enough to hold the correctly padded data
*/
int pkcs7_padding_pad_buffer( uint8_t *buffer, size_t data_length, size_t buffer_size, uint8_t modulus );
int pkcs7_padding_valid( uint8_t *buffer, size_t data_length, size_t buffer_size, uint8_t modulus );
/* Given a block of pkcs7 padded data, return the actual data length in the block based on the padding applied.
* buffer_size must be a multiple of modulus
* last byte 'x' in buffer must be between 1 and modulus
* buffer_size must be at least x + 1 in size
* last 'x' bytes in buffer must be same as 'x'
* returned size will be buffer_size - 'x'
*/
size_t pkcs7_padding_data_length( uint8_t * buffer, size_t buffer_size, uint8_t modulus );
#endif

View File

@ -260,6 +260,9 @@ bool process_record_quantum(keyrecord_t *record) {
#endif
#if defined(VIA_ENABLE)
process_record_via(keycode, record) &&
#endif
#if defined(ENC_ENABLE)
process_record_enc(keycode, record) &&
#endif
process_record_kb(keycode, record) &&
#if defined(SECURE_ENABLE)

View File

@ -217,6 +217,10 @@ extern layer_state_t layer_state;
# include "via.h"
#endif
#ifdef ENC_ENABLE
# include "enc.h"
#endif
#ifdef WPM_ENABLE
# include "wpm.h"
#endif

View File

@ -605,6 +605,17 @@ enum quantum_keycodes {
CAPS_WORD,
#ifdef ENC_ENABLE
ENC_INIT,
ENC_LOAD,
ENC_CLOSE,
ENC_PASTE,
ENC_KEYSPASTE,
ENC_RESET,
ENC_REQ_ALLOW,
ENC_REQ_DENY,
#endif
// Start of custom keycode range for keyboards and keymaps - always leave at the end
SAFE_RANGE
};

View File

@ -84,6 +84,14 @@ enum serial_transaction_id {
PUT_POINTING_CPI,
#endif // defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE)
#if defined(ENC_ENABLE) && defined(SPLIT_ENC_MODE_ENABLE)
PUT_ENC_MODE,
#endif // defined(ENC_ENABLE) && defined(SPLIT_ENC_MODE_ENABLE)
#if defined(ENC_ENABLE) && defined(SPLIT_ENC_FLAGS_ENABLE)
PUT_ENC_FLAGS,
#endif // defined(ENC_ENABLE) && defined(SPLIT_ENC_FLAGS_ENABLE)
#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
PUT_RPC_INFO,
PUT_RPC_REQ_DATA,

View File

@ -663,6 +663,59 @@ static void pointing_handlers_slave(matrix_row_t master_matrix[], matrix_row_t s
#endif // defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE)
////////////////////////////////////////////////////
// ENC
#if defined(ENC_ENABLE) && defined(SPLIT_ENC_MODE_ENABLE)
static bool enc_mode_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
enc_mode_t enc_mode_sync;
enc_mode_sync = enc_get_mode();
return send_if_data_mismatch(PUT_ENC_MODE, &last_update, &enc_mode_sync, &split_shmem->enc_mode_sync, sizeof(enc_mode_sync));
}
static void enc_mode_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
enc_set_mode(split_shmem->enc_mode_sync);
}
# define TRANSACTIONS_ENC_MODE_MASTER() TRANSACTION_HANDLER_MASTER(enc_mode)
# define TRANSACTIONS_ENC_MODE_SLAVE() TRANSACTION_HANDLER_SLAVE(enc_mode)
# define TRANSACTIONS_ENC_MODE_REGISTRATIONS [PUT_ENC_MODE] = trans_initiator2target_initializer(enc_mode_sync),
#else // defined(ENC_ENABLE) && defined(SPLIT_ENC_MODE_ENABLE)
# define TRANSACTIONS_ENC_MODE_MASTER()
# define TRANSACTIONS_ENC_MODE_SLAVE()
# define TRANSACTIONS_ENC_MODE_REGISTRATIONS
#endif // defined(ENC_ENABLE) && defined(SPLIT_ENC_MODE_ENABLE)
#if defined(ENC_ENABLE) && defined(SPLIT_ENC_FLAGS_ENABLE)
static bool enc_flags_handlers_master(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
static uint32_t last_update = 0;
enc_config_flags_t enc_flags_sync;
enc_flags_sync = enc_get_config_flags();
return send_if_data_mismatch(PUT_ENC_FLAGS, &last_update, &enc_flags_sync, &split_shmem->enc_flags_sync, sizeof(enc_flags_sync));
}
static void enc_flags_handlers_slave(matrix_row_t master_matrix[], matrix_row_t slave_matrix[]) {
enc_set_config_flags(split_shmem->enc_flags_sync);
}
# define TRANSACTIONS_ENC_FLAGS_MASTER() TRANSACTION_HANDLER_MASTER(enc_flags)
# define TRANSACTIONS_ENC_FLAGS_SLAVE() TRANSACTION_HANDLER_SLAVE(enc_flags)
# define TRANSACTIONS_ENC_FLAGS_REGISTRATIONS [PUT_ENC_FLAGS] = trans_initiator2target_initializer(enc_flags_sync),
#else // defined(ENC_ENABLE) && defined(SPLIT_ENC_FLAGS_ENABLE)
# define TRANSACTIONS_ENC_FLAGS_MASTER()
# define TRANSACTIONS_ENC_FLAGS_SLAVE()
# define TRANSACTIONS_ENC_FLAGS_REGISTRATIONS
#endif // defined(ENC_ENABLE) && defined(SPLIT_ENC_FLAGS_ENABLE)
////////////////////////////////////////////////////
split_transaction_desc_t split_transaction_table[NUM_TOTAL_TRANSACTIONS] = {

View File

@ -185,6 +185,14 @@ typedef struct _split_shared_memory_t {
split_slave_pointing_sync_t pointing;
#endif // defined(POINTING_DEVICE_ENABLE) && defined(SPLIT_POINTING_ENABLE)
#if defined(ENC_ENABLE) && defined(SPLIT_ENC_MODE_ENABLE)
enc_mode_t enc_mode_sync;
#endif // defined(ENC_ENABLE) && defined(SPLIT_ENC_MODE_ENABLE)
#if defined(ENC_ENABLE) && defined(SPLIT_ENC_FLAGS_ENABLE)
enc_config_flags_t enc_flags_sync;
#endif // defined(ENC_ENABLE) && defined(SPLIT_ENC_FLAGS_ENABLE)
#if defined(SPLIT_TRANSACTION_IDS_KB) || defined(SPLIT_TRANSACTION_IDS_USER)
rpc_sync_info_t rpc_info;
uint8_t rpc_m2s_buffer[RPC_M2S_BUFFER_SIZE];

View File

@ -45,10 +45,17 @@
# define VIA_EEPROM_LAYOUT_OPTIONS_DEFAULT 0x00000000
#endif
// If ENC_ENABLE the layout has to be adjusted
// for storing the needed crypto stuff inside the EEPROM
#ifdef ENC_ENABLE
# include "enc.h"
# define VIA_EEPROM_CUSTOM_CONFIG_ADDR (VIA_EEPROM_LAYOUT_OPTIONS_ADDR + VIA_EEPROM_LAYOUT_OPTIONS_SIZE + ENC_EEPROM_SIZE)
#else
// The end of the EEPROM memory used by VIA
// By default, dynamic keymaps will start at this if there is no
// custom config
#define VIA_EEPROM_CUSTOM_CONFIG_ADDR (VIA_EEPROM_LAYOUT_OPTIONS_ADDR + VIA_EEPROM_LAYOUT_OPTIONS_SIZE)
# define VIA_EEPROM_CUSTOM_CONFIG_ADDR (VIA_EEPROM_LAYOUT_OPTIONS_ADDR + VIA_EEPROM_LAYOUT_OPTIONS_SIZE)
#endif
#ifndef VIA_EEPROM_CUSTOM_CONFIG_SIZE
# define VIA_EEPROM_CUSTOM_CONFIG_SIZE 0