Compare commits

...

1 Commits

Author SHA1 Message Date
Matthias Fulz f580923508 cleanup 2022-03-26 00:50:37 +01:00
31967 changed files with 0 additions and 1926703 deletions

View File

@ -1,6 +0,0 @@
FROM qmkfm/qmk_cli
VOLUME /qmk_firmware
WORKDIR /qmk_firmware
CMD qmk compile -kb all -km default

266
Doxyfile
View File

@ -1,266 +0,0 @@
# Doxyfile 1.8.14
# This file describes the settings to be used by the documentation system
# doxygen (www.doxygen.org) for qmk_firmware (github.com/qmk/qmk_firmware)
#
# All text after a double hash (##) is considered a comment and is placed in
# front of the TAG it is preceding.
#
# All text after a single hash (#) is considered a comment and will be ignored.
# The format is:
# TAG = value [value, ...]
# For lists, items can also be appended using:
# TAG += value [value, ...]
# Values that contain spaces should be placed between quotes (\" \").
#---------------------------------------------------------------------------
# Project related configuration options
#---------------------------------------------------------------------------
DOXYFILE_ENCODING = UTF-8
PROJECT_NAME = "QMK Firmware"
PROJECT_NUMBER = https://github.com/qmk/qmk_firmware
PROJECT_BRIEF = "Keyboard controller firmware for Atmel AVR and ARM USB families"
OUTPUT_DIRECTORY = .build/doxygen
ALLOW_UNICODE_NAMES = NO
OUTPUT_LANGUAGE = English
BRIEF_MEMBER_DESC = YES
REPEAT_BRIEF = YES
ABBREVIATE_BRIEF = "The $name class" \
"The $name widget" \
"The $name file" \
is \
provides \
specifies \
contains \
represents \
a \
an \
the
ALWAYS_DETAILED_SEC = NO
INLINE_INHERITED_MEMB = NO
FULL_PATH_NAMES = YES
STRIP_FROM_PATH =
STRIP_FROM_INC_PATH =
SHORT_NAMES = NO
JAVADOC_AUTOBRIEF = NO
QT_AUTOBRIEF = NO
MULTILINE_CPP_IS_BRIEF = NO
INHERIT_DOCS = YES
SEPARATE_MEMBER_PAGES = NO
TAB_SIZE = 4
ALIASES =
TCL_SUBST =
OPTIMIZE_OUTPUT_FOR_C = YES
OPTIMIZE_OUTPUT_JAVA = NO
OPTIMIZE_FOR_FORTRAN = NO
OPTIMIZE_OUTPUT_VHDL = NO
EXTENSION_MAPPING =
MARKDOWN_SUPPORT = YES
TOC_INCLUDE_HEADINGS = 2
AUTOLINK_SUPPORT = YES
BUILTIN_STL_SUPPORT = NO
CPP_CLI_SUPPORT = NO
SIP_SUPPORT = NO
IDL_PROPERTY_SUPPORT = YES
DISTRIBUTE_GROUP_DOC = NO
GROUP_NESTED_COMPOUNDS = NO
SUBGROUPING = YES
INLINE_GROUPED_CLASSES = NO
INLINE_SIMPLE_STRUCTS = NO
TYPEDEF_HIDES_STRUCT = NO
LOOKUP_CACHE_SIZE = 0
#---------------------------------------------------------------------------
# Build related configuration options
#---------------------------------------------------------------------------
EXTRACT_ALL = NO
EXTRACT_PRIVATE = NO
EXTRACT_PACKAGE = NO
EXTRACT_STATIC = NO
EXTRACT_LOCAL_CLASSES = YES
EXTRACT_LOCAL_METHODS = NO
EXTRACT_ANON_NSPACES = NO
HIDE_UNDOC_MEMBERS = NO
HIDE_UNDOC_CLASSES = NO
HIDE_FRIEND_COMPOUNDS = NO
HIDE_IN_BODY_DOCS = NO
INTERNAL_DOCS = NO
CASE_SENSE_NAMES = NO
HIDE_SCOPE_NAMES = YES
HIDE_COMPOUND_REFERENCE= NO
SHOW_INCLUDE_FILES = YES
SHOW_GROUPED_MEMB_INC = NO
FORCE_LOCAL_INCLUDES = NO
INLINE_INFO = YES
SORT_MEMBER_DOCS = YES
SORT_BRIEF_DOCS = NO
SORT_MEMBERS_CTORS_1ST = NO
SORT_GROUP_NAMES = NO
SORT_BY_SCOPE_NAME = NO
STRICT_PROTO_MATCHING = NO
GENERATE_TODOLIST = YES
GENERATE_TESTLIST = YES
GENERATE_BUGLIST = YES
GENERATE_DEPRECATEDLIST= YES
ENABLED_SECTIONS =
MAX_INITIALIZER_LINES = 30
SHOW_USED_FILES = YES
SHOW_FILES = YES
SHOW_NAMESPACES = YES
FILE_VERSION_FILTER =
LAYOUT_FILE =
CITE_BIB_FILES =
#---------------------------------------------------------------------------
# Configuration options related to warning and progress messages
#---------------------------------------------------------------------------
QUIET = NO
WARNINGS = YES
WARN_IF_UNDOCUMENTED = YES
WARN_IF_DOC_ERROR = YES
WARN_NO_PARAMDOC = NO
WARN_AS_ERROR = NO
WARN_FORMAT = "$file:$line: $text"
WARN_LOGFILE =
#---------------------------------------------------------------------------
# Configuration options related to the input files
#---------------------------------------------------------------------------
INPUT = tmk_core quantum drivers
INPUT_ENCODING = UTF-8
FILE_PATTERNS = *.c \
*.cc \
*.cxx \
*.cpp \
*.c++ \
*.h \
*.hh \
*.hxx \
*.hpp \
*.h++
RECURSIVE = YES
EXCLUDE =
EXCLUDE_SYMLINKS = NO
EXCLUDE_PATTERNS = */protocol/arm_atsam/*
EXCLUDE_SYMBOLS =
EXAMPLE_PATH =
EXAMPLE_PATTERNS = *
EXAMPLE_RECURSIVE = NO
IMAGE_PATH =
INPUT_FILTER =
FILTER_PATTERNS =
FILTER_SOURCE_FILES = NO
FILTER_SOURCE_PATTERNS =
USE_MDFILE_AS_MAINPAGE =
#---------------------------------------------------------------------------
# Configuration options related to source browsing
#---------------------------------------------------------------------------
SOURCE_BROWSER = YES
INLINE_SOURCES = NO
STRIP_CODE_COMMENTS = YES
REFERENCED_BY_RELATION = NO
REFERENCES_RELATION = NO
REFERENCES_LINK_SOURCE = YES
SOURCE_TOOLTIPS = YES
USE_HTAGS = NO
VERBATIM_HEADERS = YES
#---------------------------------------------------------------------------
# Configuration options related to the alphabetical class index
#---------------------------------------------------------------------------
ALPHABETICAL_INDEX = YES
COLS_IN_ALPHA_INDEX = 5
IGNORE_PREFIX =
#---------------------------------------------------------------------------
# Configuration options related to disabled outputs
#---------------------------------------------------------------------------
GENERATE_HTML = NO
GENERATE_LATEX = NO
GENERATE_RTF = NO
GENERATE_MAN = NO
GENERATE_DOCBOOK = NO
GENERATE_AUTOGEN_DEF = NO
GENERATE_PERLMOD = NO
#---------------------------------------------------------------------------
# Configuration options related to the XML output
#---------------------------------------------------------------------------
GENERATE_XML = YES
XML_OUTPUT = xml
XML_PROGRAMLISTING = YES
#---------------------------------------------------------------------------
# Configuration options related to the preprocessor
#---------------------------------------------------------------------------
ENABLE_PREPROCESSING = YES
MACRO_EXPANSION = NO
EXPAND_ONLY_PREDEF = NO
SEARCH_INCLUDES = YES
INCLUDE_PATH =
INCLUDE_FILE_PATTERNS =
PREDEFINED = __DOXYGEN__ PROGMEM
EXPAND_AS_DEFINED =
SKIP_FUNCTION_MACROS = YES
#---------------------------------------------------------------------------
# Configuration options related to external references
#---------------------------------------------------------------------------
TAGFILES =
GENERATE_TAGFILE =
ALLEXTERNALS = NO
EXTERNAL_GROUPS = YES
EXTERNAL_PAGES = YES
PERL_PATH = /usr/bin/perl
#---------------------------------------------------------------------------
# Configuration options related to the dot tool
#---------------------------------------------------------------------------
CLASS_DIAGRAMS = YES
MSCGEN_PATH =
DIA_PATH =
HIDE_UNDOC_RELATIONS = YES
HAVE_DOT = NO
DOT_NUM_THREADS = 0
DOT_FONTNAME = Helvetica
DOT_FONTSIZE = 10
DOT_FONTPATH =
CLASS_GRAPH = YES
COLLABORATION_GRAPH = YES
GROUP_GRAPHS = YES
UML_LOOK = NO
UML_LIMIT_NUM_FIELDS = 10
TEMPLATE_RELATIONS = NO
INCLUDE_GRAPH = YES
INCLUDED_BY_GRAPH = YES
CALL_GRAPH = NO
CALLER_GRAPH = NO
GRAPHICAL_HIERARCHY = YES
DIRECTORY_GRAPH = YES
DOT_IMAGE_FORMAT = png
INTERACTIVE_SVG = NO
DOT_PATH =
DOTFILE_DIRS =
MSCFILE_DIRS =
DIAFILE_DIRS =
PLANTUML_JAR_PATH =
PLANTUML_CFG_FILE =
PLANTUML_INCLUDE_PATH =
DOT_GRAPH_MAX_NODES = 50
MAX_DOT_GRAPH_DEPTH = 0
DOT_TRANSPARENT = NO
DOT_MULTI_TARGETS = NO
GENERATE_LEGEND = YES
DOT_CLEANUP = YES

339
LICENSE
View File

@ -1,339 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

452
Makefile
View File

@ -1,452 +0,0 @@
ifndef VERBOSE
.SILENT:
endif
# Never run this makefile in parallel, as it could screw things up
# It won't affect the submakes, so you still get the speedup from specifying -jx
.NOTPARALLEL:
# Allow the silent with lower caps to work the same way as upper caps
ifdef silent
SILENT = $(silent)
endif
ifdef SILENT
SUB_IS_SILENT := $(SILENT)
endif
# We need to make sure that silent is always turned off at the top level
# Otherwise the [OK], [ERROR] and [WARN] messages won't be displayed correctly
override SILENT := false
ifdef SKIP_VERSION
SKIP_GIT := yes
endif
ifndef SUB_IS_SILENT
ifndef SKIP_GIT
QMK_VERSION := $(shell git describe --abbrev=0 --tags 2>/dev/null)
endif
ifneq ($(QMK_VERSION),)
$(info QMK Firmware $(QMK_VERSION))
endif
endif
# Determine which qmk cli to use
QMK_BIN := qmk
# avoid 'Entering|Leaving directory' messages
MAKEFLAGS += --no-print-directory
ON_ERROR := error_occurred=1
BREAK_ON_ERRORS = no
STARTING_MAKEFILE := $(firstword $(MAKEFILE_LIST))
ROOT_MAKEFILE := $(lastword $(MAKEFILE_LIST))
ROOT_DIR := $(dir $(ROOT_MAKEFILE))
ifeq ($(ROOT_DIR),)
ROOT_DIR := .
endif
ABS_STARTING_MAKEFILE := $(abspath $(STARTING_MAKEFILE))
ABS_ROOT_MAKEFILE := $(abspath $(ROOT_MAKEFILE))
ABS_STARTING_DIR := $(dir $(ABS_STARTING_MAKEFILE))
ABS_ROOT_DIR := $(dir $(ABS_ROOT_MAKEFILE))
STARTING_DIR := $(subst $(ABS_ROOT_DIR),,$(ABS_STARTING_DIR))
include paths.mk
TEST_OUTPUT_DIR := $(BUILD_DIR)/test
ERROR_FILE := $(BUILD_DIR)/error_occurred
.DEFAULT_GOAL := all:all
# Compare the start of the RULE variable with the first argument($1)
# If the rules equals $1 or starts with $1:, RULE_FOUND is set to true
# and $1 is removed from the RULE variable
# Otherwise the RULE_FOUND variable is set to false, and RULE left as it was
# The function is a bit tricky, since there's no built in $(startswith) function
define COMPARE_AND_REMOVE_FROM_RULE_HELPER
ifeq ($1,$$(RULE))
RULE:=
RULE_FOUND := true
else
STARTCOLON_REMOVED=$$(subst START$1:,,START$$(RULE))
ifneq ($$(STARTCOLON_REMOVED),START$$(RULE))
RULE_FOUND := true
RULE := $$(STARTCOLON_REMOVED)
else
RULE_FOUND := false
endif
endif
endef
# This makes it easier to call COMPARE_AND_REMOVE_FROM_RULE, since it makes it behave like
# a function that returns the value
COMPARE_AND_REMOVE_FROM_RULE = $(eval $(call COMPARE_AND_REMOVE_FROM_RULE_HELPER,$1))$(RULE_FOUND)
# Try to find a match for the start of the rule to be checked
# $1 The list to be checked
# If a match is found, then RULE_FOUND is set to true
# and MATCHED_ITEM to the item that was matched
define TRY_TO_MATCH_RULE_FROM_LIST_HELPER
# Split on ":", padding with empty strings to avoid indexing issues
TOKEN1:=$$(shell python3 -c "import sys; print((sys.argv[1].split(':',1)+[''])[0])" $$(RULE))
TOKENr:=$$(shell python3 -c "import sys; print((sys.argv[1].split(':',1)+[''])[1])" $$(RULE))
FOUNDx:=$$(shell echo $1 | tr " " "\n" | grep -Fx $$(TOKEN1))
ifneq ($$(FOUNDx),)
RULE := $$(TOKENr)
RULE_FOUND := true
MATCHED_ITEM := $$(TOKEN1)
else
RULE_FOUND := false
MATCHED_ITEM :=
endif
endef
# Make it easier to call TRY_TO_MATCH_RULE_FROM_LIST
TRY_TO_MATCH_RULE_FROM_LIST = $(eval $(call TRY_TO_MATCH_RULE_FROM_LIST_HELPER,$1))$(RULE_FOUND)
define ALL_IN_LIST_LOOP
OLD_RULE$1 := $$(RULE)
$$(eval $$(call $1,$$(ITEM$1)))
RULE := $$(OLD_RULE$1)
endef
define PARSE_ALL_IN_LIST
$$(foreach ITEM$1,$2,$$(eval $$(call ALL_IN_LIST_LOOP,$1)))
endef
# The entry point for rule parsing
# parses a rule in the format <keyboard>:<keymap>:<target>
# but this particular function only deals with the first <keyboard> part
define PARSE_RULE
RULE := $1
COMMANDS :=
REQUIRE_PLATFORM_KEY :=
# If the rule starts with all, then continue the parsing from
# PARSE_ALL_KEYBOARDS
ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,all),true)
KEYBOARD_RULE=all
$$(eval $$(call PARSE_ALL_KEYBOARDS))
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,all-avr),true)
KEYBOARD_RULE=all
REQUIRE_PLATFORM_KEY := avr
$$(eval $$(call PARSE_ALL_KEYBOARDS))
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,all-chibios),true)
KEYBOARD_RULE=all
REQUIRE_PLATFORM_KEY := chibios
$$(eval $$(call PARSE_ALL_KEYBOARDS))
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,all-arm_atsam),true)
KEYBOARD_RULE=all
REQUIRE_PLATFORM_KEY := arm_atsam
$$(eval $$(call PARSE_ALL_KEYBOARDS))
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,test),true)
$$(eval $$(call PARSE_TEST))
# If the rule starts with the name of a known keyboard, then continue
# the parsing from PARSE_KEYBOARD
else ifeq ($$(call TRY_TO_MATCH_RULE_FROM_LIST,$$(shell util/list_keyboards.sh | sort -u)),true)
KEYBOARD_RULE=$$(MATCHED_ITEM)
$$(eval $$(call PARSE_KEYBOARD,$$(MATCHED_ITEM)))
else
$$(info make: *** No rule to make target '$1'. Stop.)
$$(info |)
$$(info | QMK's make format is:)
$$(info | make keyboard_folder:keymap_folder[:target])
$$(info |)
$$(info | Where `keyboard_folder` is the path to the keyboard relative to)
$$(info | `qmk_firmware/keyboards/`, and `keymap_folder` is the name of the)
$$(info | keymap folder under that board's `keymaps/` directory.)
$$(info |)
$$(info | Examples:)
$$(info | keyboards/dz60, keyboards/dz60/keymaps/default)
$$(info | -> make dz60:default)
$$(info | -> qmk compile -kb dz60 -km default)
$$(info | keyboards/planck/rev6, keyboards/planck/keymaps/default)
$$(info | -> make planck/rev6:default:flash)
$$(info | -> qmk flash -kb planck/rev6 -km default)
$$(info |)
endif
endef
# $1 = Keyboard
# Parses a rule in the format <keymap>:<target>
# the keyboard is already known when entering this function
define PARSE_KEYBOARD
# If we want to compile the default subproject, then we need to
# include the correct makefile to determine the actual name of it
CURRENT_KB := $1
# KEYBOARD_FOLDERS := $$(subst /, , $(CURRENT_KB))
DEFAULT_FOLDER := $$(CURRENT_KB)
# We assume that every rules.mk will contain the full default value
$$(eval include $(ROOT_DIR)/keyboards/$$(CURRENT_KB)/rules.mk)
ifneq ($$(DEFAULT_FOLDER),$$(CURRENT_KB))
$$(eval include $(ROOT_DIR)/keyboards/$$(DEFAULT_FOLDER)/rules.mk)
endif
CURRENT_KB := $$(DEFAULT_FOLDER)
# 5/4/3/2/1
KEYBOARD_FOLDER_PATH_1 := $$(CURRENT_KB)
KEYBOARD_FOLDER_PATH_2 := $$(patsubst %/,%,$$(dir $$(KEYBOARD_FOLDER_PATH_1)))
KEYBOARD_FOLDER_PATH_3 := $$(patsubst %/,%,$$(dir $$(KEYBOARD_FOLDER_PATH_2)))
KEYBOARD_FOLDER_PATH_4 := $$(patsubst %/,%,$$(dir $$(KEYBOARD_FOLDER_PATH_3)))
KEYBOARD_FOLDER_PATH_5 := $$(patsubst %/,%,$$(dir $$(KEYBOARD_FOLDER_PATH_4)))
KEYMAPS :=
# get a list of all keymaps
KEYMAPS += $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(KEYBOARD_FOLDER_PATH_1)/keymaps/*/.)))
KEYMAPS += $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(KEYBOARD_FOLDER_PATH_2)/keymaps/*/.)))
KEYMAPS += $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(KEYBOARD_FOLDER_PATH_3)/keymaps/*/.)))
KEYMAPS += $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(KEYBOARD_FOLDER_PATH_4)/keymaps/*/.)))
KEYMAPS += $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/keyboards/$$(KEYBOARD_FOLDER_PATH_5)/keymaps/*/.)))
KEYBOARD_LAYOUTS := $(shell $(QMK_BIN) list-layouts --keyboard $1)
LAYOUT_KEYMAPS :=
$$(foreach LAYOUT,$$(KEYBOARD_LAYOUTS),$$(eval LAYOUT_KEYMAPS += $$(notdir $$(patsubst %/.,%,$$(wildcard $(ROOT_DIR)/layouts/*/$$(LAYOUT)/*/.)))))
KEYMAPS := $$(sort $$(KEYMAPS) $$(LAYOUT_KEYMAPS))
# if the rule after removing the start of it is empty (we haven't specified a kemap or target)
# compile all the keymaps
ifeq ($$(RULE),)
$$(eval $$(call PARSE_ALL_KEYMAPS))
# The same if all was specified
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,all),true)
$$(eval $$(call PARSE_ALL_KEYMAPS))
# List all keymaps for the given keyboard
else ifeq ($$(call COMPARE_AND_REMOVE_FROM_RULE,list-keymaps),true)
$$(eval $$(call LIST_ALL_KEYMAPS))
# Try to match the specified keyamp with the list of known keymaps
else ifeq ($$(call TRY_TO_MATCH_RULE_FROM_LIST,$$(KEYMAPS)),true)
$$(eval $$(call PARSE_KEYMAP,$$(MATCHED_ITEM)))
# Otherwise try to match the keymap from the current folder, or arguments to the make command
else ifneq ($$(KEYMAP),)
$$(eval $$(call PARSE_KEYMAP,$$(KEYMAP)))
# Otherwise if we are running make all:<user> just skip
else ifeq ($$(KEYBOARD_RULE),all)
# $$(info Skipping: No user keymap for $$(CURRENT_KB))
# Otherwise, make all keymaps, again this is consistent with how it works without
# any arguments
else
$$(eval $$(call PARSE_ALL_KEYMAPS))
endif
endef
# if we are going to compile all keyboards, match the rest of the rule
# for each of them
define PARSE_ALL_KEYBOARDS
$$(eval $$(call PARSE_ALL_IN_LIST,PARSE_KEYBOARD,$(shell util/list_keyboards.sh noci | sort -u)))
endef
# Prints a list of all known keymaps for the given keyboard
define LIST_ALL_KEYMAPS
COMMAND_true_LIST_KEYMAPS := \
printf "$$(KEYMAPS)\n";
COMMAND_false_LIST_KEYMAPS := \
printf "$$(MSG_AVAILABLE_KEYMAPS)\n"; \
printf "$$(KEYMAPS)\n";
COMMANDS += LIST_KEYMAPS
endef
# $1 Keymap
# This is the meat of compiling a keyboard, when entering this, everything is known
# keyboard, subproject, and keymap
# Note that we are not directly calling the command here, but instead building a list,
# which will later be processed
define PARSE_KEYMAP
CURRENT_KM = $1
# The rest of the rule is the target
# Remove the leading ":" from the target, as it acts as a separator
MAKE_TARGET := $$(patsubst :%,%,$$(RULE))
# We need to generate an unique indentifer to append to the COMMANDS list
CURRENT_KB_UNDER := $$(subst /,_,$$(CURRENT_KB))
COMMAND := COMMAND_KEYBOARD_$$(CURRENT_KB_UNDER)_KEYMAP_$$(CURRENT_KM)
# If we are compiling a keyboard without a subproject, we want to display just the name
# of the keyboard, otherwise keyboard/subproject
KB_SP := $$(CURRENT_KB)
# Format it in bold
KB_SP := $(BOLD)$$(KB_SP)$(NO_COLOR)
# Specify the variables that we are passing forward to submake
MAKE_VARS := KEYBOARD=$$(CURRENT_KB) KEYMAP=$$(CURRENT_KM) REQUIRE_PLATFORM_KEY=$$(REQUIRE_PLATFORM_KEY) QMK_BIN=$$(QMK_BIN)
# And the first part of the make command
MAKE_CMD := $$(MAKE) -r -R -C $(ROOT_DIR) -f $(BUILDDEFS_PATH)/build_keyboard.mk $$(MAKE_TARGET)
# The message to display
MAKE_MSG := $$(MSG_MAKE_KB)
# We run the command differently, depending on if we want more output or not
# The true version for silent output and the false version otherwise
$$(eval $$(call BUILD))
endef
define BUILD
MAKE_VARS += VERBOSE=$(VERBOSE) COLOR=$(COLOR)
COMMANDS += $$(COMMAND)
COMMAND_true_$$(COMMAND) := \
printf "$$(MAKE_MSG)" | \
$$(MAKE_MSG_FORMAT); \
LOG=$$$$($$(MAKE_CMD) $$(MAKE_VARS) SILENT=true 2>&1) ; \
if [ $$$$? -gt 0 ]; \
then $$(PRINT_ERROR_PLAIN); \
elif [ "$$$$LOG" = "skipped" ] ; \
then $$(PRINT_SKIPPED_PLAIN); \
elif [ "$$$$LOG" != "" ] ; \
then $$(PRINT_WARNING_PLAIN); \
else \
$$(PRINT_OK); \
fi;
COMMAND_false_$$(COMMAND) := \
printf "$$(MAKE_MSG)\n\n"; \
$$(MAKE_CMD) $$(MAKE_VARS) SILENT=false; \
if [ $$$$? -gt 0 ]; \
then error_occurred=1; \
fi;
endef
# Just parse all the keymaps for a specific keyboard
define PARSE_ALL_KEYMAPS
$$(eval $$(call PARSE_ALL_IN_LIST,PARSE_KEYMAP,$$(KEYMAPS)))
endef
define BUILD_TEST
TEST_PATH := $1
TEST_NAME := $$(notdir $$(TEST_PATH))
MAKE_TARGET := $2
COMMAND := $1
MAKE_CMD := $$(MAKE) -r -R -C $(ROOT_DIR) -f $(BUILDDEFS_PATH)/build_test.mk $$(MAKE_TARGET)
MAKE_VARS := TEST=$$(TEST_NAME) TEST_PATH=$$(TEST_PATH) FULL_TESTS="$$(FULL_TESTS)"
MAKE_MSG := $$(MSG_MAKE_TEST)
$$(eval $$(call BUILD))
ifneq ($$(MAKE_TARGET),clean)
TEST_EXECUTABLE := $$(TEST_OUTPUT_DIR)/$$(TEST_NAME).elf
TESTS += $$(TEST_NAME)
TEST_MSG := $$(MSG_TEST)
$$(TEST_NAME)_COMMAND := \
printf "$$(TEST_MSG)\n"; \
$$(TEST_EXECUTABLE); \
if [ $$$$? -gt 0 ]; \
then error_occurred=1; \
fi; \
printf "\n";
endif
endef
define PARSE_TEST
TESTS :=
TEST_NAME := $$(firstword $$(subst :, ,$$(RULE)))
TEST_TARGET := $$(subst $$(TEST_NAME),,$$(subst $$(TEST_NAME):,,$$(RULE)))
include $(BUILDDEFS_PATH)/testlist.mk
ifeq ($$(TEST_NAME),all)
MATCHED_TESTS := $$(TEST_LIST)
else
MATCHED_TESTS := $$(foreach TEST, $$(TEST_LIST),$$(if $$(findstring $$(TEST_NAME), $$(notdir $$(TEST))), $$(TEST),))
endif
$$(foreach TEST,$$(MATCHED_TESTS),$$(eval $$(call BUILD_TEST,$$(TEST),$$(TEST_TARGET))))
endef
# Set the silent mode depending on if we are trying to compile multiple keyboards or not
# By default it's on in that case, but it can be overridden by specifying silent=false
# from the command line
define SET_SILENT_MODE
ifdef SUB_IS_SILENT
SILENT_MODE := $(SUB_IS_SILENT)
else ifeq ($$(words $$(COMMANDS)),1)
SILENT_MODE := false
else
SILENT_MODE := true
endif
endef
include $(BUILDDEFS_PATH)/message.mk
ifeq ($(strip $(BREAK_ON_ERRORS)), yes)
HANDLE_ERROR = exit 1
else
HANDLE_ERROR = echo $$error_occurred > $(ERROR_FILE)
endif
# The empty line is important here, as it will force a new shell to be created for each command
# Otherwise the command line will become too long with a lot of keyboards and keymaps
define RUN_COMMAND
+error_occurred=0;\
$(COMMAND_$(SILENT_MODE)_$(COMMAND))\
if [ $$error_occurred -gt 0 ]; then $(HANDLE_ERROR); fi;
endef
define RUN_TEST
+error_occurred=0;\
$($(TEST)_COMMAND)\
if [ $$error_occurred -gt 0 ]; then $(HANDLE_ERROR); fi;
endef
# Catch everything and parse the command line ourselves.
.PHONY: %
%:
# Check if we have the CMP tool installed
cmp $(ROOT_DIR)/Makefile $(ROOT_DIR)/Makefile >/dev/null 2>&1; if [ $$? -gt 0 ]; then printf "$(MSG_NO_CMP)"; exit 1; fi;
# Ensure that $(QMK_BIN) works.
if ! $(QMK_BIN) hello 1> /dev/null 2>&1; then printf "$(MSG_PYTHON_MISSING)"; exit 1; fi
# Check if the submodules are dirty, and display a warning if they are
ifndef SKIP_GIT
if [ ! -e lib/chibios ]; then git submodule sync lib/chibios && git submodule update --depth 50 --init lib/chibios; fi
if [ ! -e lib/chibios-contrib ]; then git submodule sync lib/chibios-contrib && git submodule update --depth 50 --init lib/chibios-contrib; fi
if [ ! -e lib/lufa ]; then git submodule sync lib/lufa && git submodule update --depth 50 --init lib/lufa; fi
if [ ! -e lib/vusb ]; then git submodule sync lib/vusb && git submodule update --depth 50 --init lib/vusb; fi
if [ ! -e lib/printf ]; then git submodule sync lib/printf && git submodule update --depth 50 --init lib/printf; fi
git submodule status --recursive 2>/dev/null | \
while IFS= read -r x; do \
case "$$x" in \
\ *) ;; \
*) printf "$(MSG_SUBMODULE_DIRTY)";break;; \
esac \
done
endif
rm -f $(ERROR_FILE) > /dev/null 2>&1
$(eval $(call PARSE_RULE,$@))
$(eval $(call SET_SILENT_MODE))
# Run all the commands in the same shell, notice the + at the first line
# it has to be there to allow parallel execution of the submake
# This always tries to compile everything, even if error occurs in the middle
# But we return the error code at the end, to trigger travis failures
# The sort at this point is to remove duplicates
$(foreach COMMAND,$(sort $(COMMANDS)),$(RUN_COMMAND))
if [ -f $(ERROR_FILE) ]; then printf "$(MSG_ERRORS)" & exit 1; fi;
$(foreach TEST,$(sort $(TESTS)),$(RUN_TEST))
if [ -f $(ERROR_FILE) ]; then printf "$(MSG_ERRORS)" & exit 1; fi;
lib/%:
git submodule sync $?
git submodule update --init $?
.PHONY: git-submodule
git-submodule:
git submodule sync --recursive
git submodule update --init --recursive --progress
.PHONY: list-keyboards
list-keyboards:
util/list_keyboards.sh | sort -u | tr '\n' ' '
.PHONY: generate-keyboards-file
generate-keyboards-file:
util/list_keyboards.sh | sort -u
.PHONY: clean
clean:
echo -n 'Deleting .build/ ... '
rm -rf $(BUILD_DIR)
echo 'done.'
.PHONY: distclean
distclean: clean
echo -n 'Deleting *.bin, *.hex, and *.uf2 ... '
rm -f *.bin *.hex *.uf2
echo 'done.'

95
Vagrantfile vendored
View File

@ -1,95 +0,0 @@
# -*- mode: ruby -*-
# vi: set ft=ruby :
Vagrant.configure(2) do |config|
# define a name instead of just 'default'
config.vm.define "qmk_firmware"
# VMware/Virtualbox ( and also Hyperv/Parallels) 64 bit
config.vm.box = "generic/debian10"
config.vm.synced_folder '.', '/vagrant'
# This section allows you to customize the Virtualbox VM
# settings, ie showing the GUI or upping the memory
# or cores if desired
config.vm.provider "virtualbox" do |vb|
# Hide the VirtualBox GUI when booting the machine
vb.gui = false
# Uncomment the below lines if you want to program
# your Teensy via the VM rather than your host OS
#vb.customize ['modifyvm', :id, '--usb', 'on']
#vb.customize ['usbfilter', 'add', '0',
# '--target', :id,
# '--name', 'teensy',
# '--vendorid', '0x16c0',
# '--productid','0x0478'
# ]
# Customize the amount of memory on the VM:
vb.memory = "512"
# Uncomment the below lines if you have time sync
# issues with make and incremental builds
#vb.customize [ "guestproperty", "set", :id, "/VirtualBox/GuestAdd/VBoxService/--timesync-set-threshold", 1000 ]
end
# This section allows you to customize the VMware VM
# settings, ie showing the GUI or upping the memory
# or cores if desired
config.vm.provider "vmware_workstation" do |vmw|
# Hide the VMware GUI when booting the machine
vmw.gui = false
# Customize the amount of memory on the VM:
vmw.memory = "512"
end
config.vm.provider "vmware_fusion" do |vmf|
# Hide the vmfare GUI when booting the machine
vmf.gui = false
# Customize the amount of memory on the VM:
vmf.memory = "512"
end
# Docker provider pulls from hub.docker.com respecting docker.image if
# config.vm.box is nil. In this case, we adhoc build util/vagrant/Dockerfile.
# Note that this bind-mounts from the current dir to
# /vagrant in the guest, so unless your UID is 1000 to match vagrant in the
# image, you'll need to: chmod -R a+rw .
config.vm.provider "docker" do |docker, override|
override.vm.box = nil
docker.build_dir = "util/vagrant"
docker.has_ssh = true
end
# Unless we are running the docker container directly
# 1. run container detached on vm
# 2. attach on 'vagrant ssh'
["virtualbox", "vmware_workstation", "vmware_fusion"].each do |type|
config.vm.provider type do |virt, override|
override.vm.provision "docker" do |d|
d.run "qmkfm/qmk_cli",
cmd: "tail -f /dev/null",
args: "--privileged -v /dev:/dev -v '/vagrant:/vagrant'"
end
override.vm.provision "shell", inline: <<-SHELL
echo 'docker restart qmkfm-qmk_cli && exec docker exec -it qmkfm-qmk_cli /bin/bash -l' >> ~vagrant/.bashrc
SHELL
end
end
config.vm.post_up_message = <<-EOT
Log into the environment using 'vagrant ssh'. QMK directory synchronized with
host is located at /vagrant
To compile the .hex files use make command inside this directory, e.g.
cd /vagrant
make <keyboard>:default
Examples:
make planck/rev4:default:dfu
make planck/rev4:default
EOT
end

View File

@ -1 +0,0 @@
theme: jekyll-theme-cayman

View File

@ -1,5 +0,0 @@
# QMK Keyboard Metadata
This directory contains machine parsable data about keyboards supported by QMK. The latest version is always available online at <https://keyboards.qmk.fm>.
Do not edit anything here by hand. It is generated with the `qmk generate-api` command.

View File

@ -1,208 +0,0 @@
# Copyright 2017 Jack Humbert
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# If it's possible that multiple bootloaders can be used for one project,
# you can leave this unset, and the correct size will be selected
# automatically.
#
# Sets the bootloader defined in the keyboard's/keymap's rules.mk
# Current options:
#
# AVR:
# halfkay PJRC Teensy
# caterina Pro Micro (Sparkfun/generic)
# atmel-dfu Atmel factory DFU
# lufa-dfu LUFA DFU
# qmk-dfu QMK DFU (LUFA + blinkenlight)
# qmk-hid QMK HID (LUFA + blinkenlight)
# bootloadhid HIDBootFlash compatible (ATmega32A)
# usbasploader USBaspLoader (ATmega328P)
# ARM:
# halfkay PJRC Teensy
# kiibohd Input:Club Kiibohd bootloader (only used on their boards)
# stm32duino STM32Duino (STM32F103x8)
# stm32-dfu STM32 USB DFU in ROM
# apm32-dfu APM32 USB DFU in ROM
# RISC-V:
# gd32v-dfu GD32V USB DFU in ROM
#
# If you need to provide your own implementation, you can set inside `rules.mk`
# `BOOTLOADER = custom` -- you'll need to provide your own implementations. See
# the respective file under `platforms/<PLATFORM>/bootloaders/custom.c` to see
# which functions may be overridden.
#
# BOOTLOADER_SIZE can still be defined manually, but it's recommended
# you add any possible configuration to this list
ifeq ($(strip $(BOOTLOADER)), custom)
OPT_DEFS += -DBOOTLOADER_CUSTOM
BOOTLOADER_TYPE = custom
endif
ifeq ($(strip $(BOOTLOADER)), atmel-dfu)
OPT_DEFS += -DBOOTLOADER_ATMEL_DFU
OPT_DEFS += -DBOOTLOADER_DFU
BOOTLOADER_TYPE = dfu
ifneq (,$(filter $(MCU), at90usb162 atmega16u2 atmega32u2 atmega16u4 atmega32u4 at90usb646 at90usb647))
BOOTLOADER_SIZE = 4096
endif
ifneq (,$(filter $(MCU), at90usb1286 at90usb1287))
BOOTLOADER_SIZE = 8192
endif
endif
ifeq ($(strip $(BOOTLOADER)), lufa-dfu)
OPT_DEFS += -DBOOTLOADER_LUFA_DFU
OPT_DEFS += -DBOOTLOADER_DFU
BOOTLOADER_TYPE = dfu
ifneq (,$(filter $(MCU), at90usb162 atmega16u2 atmega32u2 atmega16u4 atmega32u4 at90usb646 at90usb647))
BOOTLOADER_SIZE ?= 4096
endif
ifneq (,$(filter $(MCU), at90usb1286 at90usb1287))
BOOTLOADER_SIZE ?= 8192
endif
endif
ifeq ($(strip $(BOOTLOADER)), qmk-dfu)
OPT_DEFS += -DBOOTLOADER_QMK_DFU
OPT_DEFS += -DBOOTLOADER_DFU
BOOTLOADER_TYPE = dfu
ifneq (,$(filter $(MCU), at90usb162 atmega16u2 atmega32u2 atmega16u4 atmega32u4 at90usb646 at90usb647))
BOOTLOADER_SIZE ?= 4096
endif
ifneq (,$(filter $(MCU), at90usb1286 at90usb1287))
BOOTLOADER_SIZE ?= 8192
endif
endif
ifeq ($(strip $(BOOTLOADER)), qmk-hid)
OPT_DEFS += -DBOOTLOADER_QMK_HID
OPT_DEFS += -DBOOTLOADER_HID
BOOTLOADER_TYPE = dfu
BOOTLOADER_SIZE ?= 4096
endif
ifeq ($(strip $(BOOTLOADER)), halfkay)
OPT_DEFS += -DBOOTLOADER_HALFKAY
BOOTLOADER_TYPE = halfkay
ifeq ($(strip $(MCU)), atmega32u4)
BOOTLOADER_SIZE = 512
endif
ifeq ($(strip $(MCU)), at90usb1286)
BOOTLOADER_SIZE = 1024
endif
endif
ifeq ($(strip $(BOOTLOADER)), caterina)
OPT_DEFS += -DBOOTLOADER_CATERINA
BOOTLOADER_TYPE = caterina
BOOTLOADER_SIZE = 4096
endif
ifneq (,$(filter $(BOOTLOADER), bootloadhid bootloadHID))
OPT_DEFS += -DBOOTLOADER_BOOTLOADHID
BOOTLOADER_TYPE = bootloadhid
BOOTLOADER_SIZE = 4096
endif
ifneq (,$(filter $(BOOTLOADER), usbasploader USBasp))
OPT_DEFS += -DBOOTLOADER_USBASP
BOOTLOADER_TYPE = usbasploader
BOOTLOADER_SIZE = 4096
endif
ifeq ($(strip $(BOOTLOADER)), lufa-ms)
OPT_DEFS += -DBOOTLOADER_MS
BOOTLOADER_TYPE = dfu
BOOTLOADER_SIZE ?= 8192
FIRMWARE_FORMAT = bin
cpfirmware: lufa_warning
.INTERMEDIATE: lufa_warning
lufa_warning: $(FIRMWARE_FORMAT)
$(info @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@)
$(info LUFA MASS STORAGE Bootloader selected)
$(info DO NOT USE THIS BOOTLOADER IN NEW PROJECTS!)
$(info It is extremely prone to bricking, and is only included to support existing boards.)
$(info @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@)
endif
ifdef BOOTLOADER_SIZE
OPT_DEFS += -DBOOTLOADER_SIZE=$(strip $(BOOTLOADER_SIZE))
endif
ifeq ($(strip $(BOOTLOADER)), stm32-dfu)
OPT_DEFS += -DBOOTLOADER_STM32_DFU
BOOTLOADER_TYPE = stm32_dfu
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 0483:DF11 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 0483 -p DF11
endif
ifeq ($(strip $(BOOTLOADER)), apm32-dfu)
OPT_DEFS += -DBOOTLOADER_APM32_DFU
BOOTLOADER_TYPE = stm32_dfu
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 314B:0106 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 314B -p 0106
endif
ifeq ($(strip $(BOOTLOADER)), gd32v-dfu)
OPT_DEFS += -DBOOTLOADER_GD32V_DFU
BOOTLOADER_TYPE = gd32v_dfu
# Options to pass to dfu-util when flashing
DFU_ARGS ?= -d 28E9:0189 -a 0 -s 0x08000000:leave
DFU_SUFFIX_ARGS ?= -v 28E9 -p 0189
endif
ifeq ($(strip $(BOOTLOADER)), kiibohd)
OPT_DEFS += -DBOOTLOADER_KIIBOHD
BOOTLOADER_TYPE = kiibohd
ifeq ($(strip $(MCU_ORIG)), MK20DX128)
MCU_LDSCRIPT = MK20DX128BLDR4
endif
ifeq ($(strip $(MCU_ORIG)), MK20DX256)
MCU_LDSCRIPT = MK20DX256BLDR8
endif
# Options to pass to dfu-util when flashing
DFU_ARGS = -d 1C11:B007
DFU_SUFFIX_ARGS = -v 1C11 -p B007
endif
ifeq ($(strip $(BOOTLOADER)), stm32duino)
OPT_DEFS += -DBOOTLOADER_STM32DUINO
MCU_LDSCRIPT = STM32F103x8_stm32duino_bootloader
BOARD = STM32_F103_STM32DUINO
BOOTLOADER_TYPE = stm32duino
# Options to pass to dfu-util when flashing
DFU_ARGS = -d 1EAF:0003 -a 2 -R
DFU_SUFFIX_ARGS = -v 1EAF -p 0003
endif
ifeq ($(strip $(BOOTLOADER)), tinyuf2)
OPT_DEFS += -DBOOTLOADER_TINYUF2
BOOTLOADER_TYPE = tinyuf2
endif
ifeq ($(strip $(BOOTLOADER)), halfkay)
OPT_DEFS += -DBOOTLOADER_HALFKAY
BOOTLOADER_TYPE = halfkay
endif
ifeq ($(strip $(BOOTLOADER)), md-boot)
OPT_DEFS += -DBOOTLOADER_MD_BOOT
BOOTLOADER_TYPE = md_boot
endif
ifeq ($(strip $(BOOTLOADER_TYPE)),)
$(call CATASTROPHIC_ERROR,Invalid BOOTLOADER,No bootloader specified. Please set an appropriate 'BOOTLOADER' in your keyboard's 'rules.mk' file.)
endif

View File

@ -1,36 +0,0 @@
# Copyright 2017 Fred Sundvik
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
$(TEST)_INC := \
tests/test_common/common_config.h
$(TEST)_SRC := \
$(TMK_COMMON_SRC) \
$(QUANTUM_SRC) \
$(SRC) \
tests/test_common/keymap.c \
tests/test_common/matrix.c \
tests/test_common/test_driver.cpp \
tests/test_common/keyboard_report_util.cpp \
tests/test_common/test_fixture.cpp \
tests/test_common/test_keymap_key.cpp \
tests/test_common/test_logger.cpp \
$(patsubst $(ROOTDIR)/%,%,$(wildcard $(TEST_PATH)/*.cpp))
$(TEST)_DEFS := $(TMK_COMMON_DEFS) $(OPT_DEFS)
$(TEST)_CONFIG := $(TEST_PATH)/config.h
VPATH += $(TOP_DIR)/tests/test_common

View File

@ -1,17 +0,0 @@
# Look for a json keymap file
ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_5)/keymap.json)","")
KEYMAP_JSON := $(MAIN_KEYMAP_PATH_5)/keymap.json
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_5)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_4)/keymap.json)","")
KEYMAP_JSON := $(MAIN_KEYMAP_PATH_4)/keymap.json
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_4)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_3)/keymap.json)","")
KEYMAP_JSON := $(MAIN_KEYMAP_PATH_3)/keymap.json
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_3)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_2)/keymap.json)","")
KEYMAP_JSON := $(MAIN_KEYMAP_PATH_2)/keymap.json
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_2)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_1)/keymap.json)","")
KEYMAP_JSON := $(MAIN_KEYMAP_PATH_1)/keymap.json
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_1)
endif

View File

@ -1,479 +0,0 @@
# Determine what keyboard we are building and setup the build environment.
#
# We support folders up to 5 levels deep below `keyboards/`. This file is
# responsible for determining which folder is being used and doing the
# corresponding environment setup.
ifndef VERBOSE
.SILENT:
endif
.DEFAULT_GOAL := all
include paths.mk
include $(BUILDDEFS_PATH)/message.mk
# Set the qmk cli to use
QMK_BIN ?= qmk
# Set the filename for the final firmware binary
KEYBOARD_FILESAFE := $(subst /,_,$(KEYBOARD))
TARGET ?= $(KEYBOARD_FILESAFE)_$(KEYMAP)
KEYBOARD_OUTPUT := $(BUILD_DIR)/obj_$(KEYBOARD_FILESAFE)
# Force expansion
TARGET := $(TARGET)
ifneq ($(FORCE_LAYOUT),)
TARGET := $(TARGET)_$(FORCE_LAYOUT)
endif
# Object files and generated keymap directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
KEYMAP_OUTPUT := $(BUILD_DIR)/obj_$(TARGET)
ifdef SKIP_VERSION
OPT_DEFS += -DSKIP_VERSION
endif
# Generate the version.h file
ifdef SKIP_VERSION
VERSION_H_FLAGS := --skip-all
endif
ifdef SKIP_GIT
VERSION_H_FLAGS := --skip-git
endif
# Generate the board's version.h file.
$(shell $(QMK_BIN) generate-version-h $(VERSION_H_FLAGS) -q -o $(KEYMAP_OUTPUT)/src/version.h)
# Determine which subfolders exist.
KEYBOARD_FOLDER_PATH_1 := $(KEYBOARD)
KEYBOARD_FOLDER_PATH_2 := $(patsubst %/,%,$(dir $(KEYBOARD_FOLDER_PATH_1)))
KEYBOARD_FOLDER_PATH_3 := $(patsubst %/,%,$(dir $(KEYBOARD_FOLDER_PATH_2)))
KEYBOARD_FOLDER_PATH_4 := $(patsubst %/,%,$(dir $(KEYBOARD_FOLDER_PATH_3)))
KEYBOARD_FOLDER_PATH_5 := $(patsubst %/,%,$(dir $(KEYBOARD_FOLDER_PATH_4)))
KEYBOARD_FOLDER_1 := $(notdir $(KEYBOARD_FOLDER_PATH_1))
KEYBOARD_FOLDER_2 := $(notdir $(KEYBOARD_FOLDER_PATH_2))
KEYBOARD_FOLDER_3 := $(notdir $(KEYBOARD_FOLDER_PATH_3))
KEYBOARD_FOLDER_4 := $(notdir $(KEYBOARD_FOLDER_PATH_4))
KEYBOARD_FOLDER_5 := $(notdir $(KEYBOARD_FOLDER_PATH_5))
KEYBOARD_PATHS :=
KEYBOARD_PATH_1 := keyboards/$(KEYBOARD_FOLDER_PATH_1)
KEYBOARD_PATH_2 := keyboards/$(KEYBOARD_FOLDER_PATH_2)
KEYBOARD_PATH_3 := keyboards/$(KEYBOARD_FOLDER_PATH_3)
KEYBOARD_PATH_4 := keyboards/$(KEYBOARD_FOLDER_PATH_4)
KEYBOARD_PATH_5 := keyboards/$(KEYBOARD_FOLDER_PATH_5)
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/)","")
KEYBOARD_PATHS += $(KEYBOARD_PATH_5)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/)","")
KEYBOARD_PATHS += $(KEYBOARD_PATH_4)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/)","")
KEYBOARD_PATHS += $(KEYBOARD_PATH_3)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/)","")
KEYBOARD_PATHS += $(KEYBOARD_PATH_2)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/)","")
KEYBOARD_PATHS += $(KEYBOARD_PATH_1)
endif
# Pull in rules.mk files from all our subfolders
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/rules.mk)","")
include $(KEYBOARD_PATH_5)/rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/rules.mk)","")
include $(KEYBOARD_PATH_4)/rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/rules.mk)","")
include $(KEYBOARD_PATH_3)/rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/rules.mk)","")
include $(KEYBOARD_PATH_2)/rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/rules.mk)","")
include $(KEYBOARD_PATH_1)/rules.mk
endif
MAIN_KEYMAP_PATH_1 := $(KEYBOARD_PATH_1)/keymaps/$(KEYMAP)
MAIN_KEYMAP_PATH_2 := $(KEYBOARD_PATH_2)/keymaps/$(KEYMAP)
MAIN_KEYMAP_PATH_3 := $(KEYBOARD_PATH_3)/keymaps/$(KEYMAP)
MAIN_KEYMAP_PATH_4 := $(KEYBOARD_PATH_4)/keymaps/$(KEYMAP)
MAIN_KEYMAP_PATH_5 := $(KEYBOARD_PATH_5)/keymaps/$(KEYMAP)
# Pull in rules from info.json
INFO_RULES_MK = $(shell $(QMK_BIN) generate-rules-mk --quiet --escape --keyboard $(KEYBOARD) --output $(KEYBOARD_OUTPUT)/src/info_rules.mk)
include $(INFO_RULES_MK)
# Check for keymap.json first, so we can regenerate keymap.c
include $(BUILDDEFS_PATH)/build_json.mk
# Pull in keymap level rules.mk
ifeq ("$(wildcard $(KEYMAP_PATH))", "")
# Look through the possible keymap folders until we find a matching keymap.c
ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_5)/keymap.c)","")
-include $(MAIN_KEYMAP_PATH_5)/rules.mk
KEYMAP_C := $(MAIN_KEYMAP_PATH_5)/keymap.c
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_5)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_4)/keymap.c)","")
-include $(MAIN_KEYMAP_PATH_4)/rules.mk
KEYMAP_C := $(MAIN_KEYMAP_PATH_4)/keymap.c
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_4)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_3)/keymap.c)","")
-include $(MAIN_KEYMAP_PATH_3)/rules.mk
KEYMAP_C := $(MAIN_KEYMAP_PATH_3)/keymap.c
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_3)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_2)/keymap.c)","")
-include $(MAIN_KEYMAP_PATH_2)/rules.mk
KEYMAP_C := $(MAIN_KEYMAP_PATH_2)/keymap.c
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_2)
else ifneq ("$(wildcard $(MAIN_KEYMAP_PATH_1)/keymap.c)","")
-include $(MAIN_KEYMAP_PATH_1)/rules.mk
KEYMAP_C := $(MAIN_KEYMAP_PATH_1)/keymap.c
KEYMAP_PATH := $(MAIN_KEYMAP_PATH_1)
else ifneq ($(LAYOUTS),)
# If we haven't found a keymap yet fall back to community layouts
include $(BUILDDEFS_PATH)/build_layout.mk
else
$(call CATASTROPHIC_ERROR,Invalid keymap,Could not find keymap)
# this state should never be reached
endif
endif
# Have we found a keymap.json?
ifneq ("$(wildcard $(KEYMAP_JSON))", "")
KEYMAP_C := $(KEYMAP_OUTPUT)/src/keymap.c
KEYMAP_H := $(KEYMAP_OUTPUT)/src/config.h
# Load the keymap-level rules.mk if exists
-include $(KEYMAP_PATH)/rules.mk
# Load any rules.mk content from keymap.json
INFO_RULES_MK = $(shell $(QMK_BIN) generate-rules-mk --quiet --escape --keyboard $(KEYBOARD) --keymap $(KEYMAP) --output $(KEYMAP_OUTPUT)/src/rules.mk)
include $(INFO_RULES_MK)
# Add rules to generate the keymap files - indentation here is important
$(KEYMAP_OUTPUT)/src/keymap.c: $(KEYMAP_JSON)
@$(SILENT) || printf "$(MSG_GENERATING) $@" | $(AWK_CMD)
$(eval CMD=$(QMK_BIN) json2c --quiet --output $(KEYMAP_C) $(KEYMAP_JSON))
@$(BUILD_CMD)
$(KEYMAP_OUTPUT)/src/config.h: $(KEYMAP_JSON)
@$(SILENT) || printf "$(MSG_GENERATING) $@" | $(AWK_CMD)
$(eval CMD=$(QMK_BIN) generate-config-h --quiet --keyboard $(KEYBOARD) --keymap $(KEYMAP) --output $(KEYMAP_H))
@$(BUILD_CMD)
generated-files: $(KEYMAP_OUTPUT)/src/config.h $(KEYMAP_OUTPUT)/src/keymap.c
endif
ifeq ($(strip $(CTPC)), yes)
CONVERT_TO_PROTON_C=yes
endif
ifeq ($(strip $(CONVERT_TO_PROTON_C)), yes)
include platforms/chibios/boards/QMK_PROTON_C/convert_to_proton_c.mk
endif
include $(BUILDDEFS_PATH)/mcu_selection.mk
# Find all the C source files to be compiled in subfolders.
KEYBOARD_SRC :=
KEYBOARD_C_1 := $(KEYBOARD_PATH_1)/$(KEYBOARD_FOLDER_1).c
KEYBOARD_C_2 := $(KEYBOARD_PATH_2)/$(KEYBOARD_FOLDER_2).c
KEYBOARD_C_3 := $(KEYBOARD_PATH_3)/$(KEYBOARD_FOLDER_3).c
KEYBOARD_C_4 := $(KEYBOARD_PATH_4)/$(KEYBOARD_FOLDER_4).c
KEYBOARD_C_5 := $(KEYBOARD_PATH_5)/$(KEYBOARD_FOLDER_5).c
ifneq ("$(wildcard $(KEYBOARD_C_5))","")
KEYBOARD_SRC += $(KEYBOARD_C_5)
endif
ifneq ("$(wildcard $(KEYBOARD_C_4))","")
KEYBOARD_SRC += $(KEYBOARD_C_4)
endif
ifneq ("$(wildcard $(KEYBOARD_C_3))","")
KEYBOARD_SRC += $(KEYBOARD_C_3)
endif
ifneq ("$(wildcard $(KEYBOARD_C_2))","")
KEYBOARD_SRC += $(KEYBOARD_C_2)
endif
ifneq ("$(wildcard $(KEYBOARD_C_1))","")
KEYBOARD_SRC += $(KEYBOARD_C_1)
endif
# Generate KEYBOARD_name_subname for all levels of the keyboard folder
KEYBOARD_FILESAFE_1 := $(subst .,,$(subst /,_,$(KEYBOARD_FOLDER_PATH_1)))
KEYBOARD_FILESAFE_2 := $(subst .,,$(subst /,_,$(KEYBOARD_FOLDER_PATH_2)))
KEYBOARD_FILESAFE_3 := $(subst .,,$(subst /,_,$(KEYBOARD_FOLDER_PATH_3)))
KEYBOARD_FILESAFE_4 := $(subst .,,$(subst /,_,$(KEYBOARD_FOLDER_PATH_4)))
KEYBOARD_FILESAFE_5 := $(subst .,,$(subst /,_,$(KEYBOARD_FOLDER_PATH_5)))
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/)","")
OPT_DEFS += -DKEYBOARD_$(KEYBOARD_FILESAFE_5)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/)","")
OPT_DEFS += -DKEYBOARD_$(KEYBOARD_FILESAFE_4)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/)","")
OPT_DEFS += -DKEYBOARD_$(KEYBOARD_FILESAFE_3)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/)","")
OPT_DEFS += -DKEYBOARD_$(KEYBOARD_FILESAFE_2)
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/)","")
OPT_DEFS += -DKEYBOARD_$(KEYBOARD_FILESAFE_1)
endif
# Setup the define for QMK_KEYBOARD_H. This is used inside of keymaps so
# that the same keymap may be used on multiple keyboards.
#
# We grab the most top-level include file that we can. That file should
# use #ifdef statements to include all the neccesary subfolder includes,
# as described here:
#
# https://docs.qmk.fm/#/feature_layouts?id=tips-for-making-layouts-keyboard-agnostic
#
QMK_KEYBOARD_H = $(KEYBOARD_OUTPUT)/src/default_keyboard.h
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/$(KEYBOARD_FOLDER_1).h)","")
QMK_KEYBOARD_H = $(KEYBOARD_FOLDER_1).h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/$(KEYBOARD_FOLDER_2).h)","")
QMK_KEYBOARD_H = $(KEYBOARD_FOLDER_2).h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/$(KEYBOARD_FOLDER_3).h)","")
QMK_KEYBOARD_H = $(KEYBOARD_FOLDER_3).h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/$(KEYBOARD_FOLDER_4).h)","")
QMK_KEYBOARD_H = $(KEYBOARD_FOLDER_4).h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/$(KEYBOARD_FOLDER_5).h)","")
QMK_KEYBOARD_H = $(KEYBOARD_FOLDER_5).h
endif
# Determine and set parameters based on the keyboard's processor family.
# We can assume a ChibiOS target When MCU_FAMILY is defined since it's
# not used for LUFA
ifdef MCU_FAMILY
PLATFORM=CHIBIOS
PLATFORM_KEY=chibios
FIRMWARE_FORMAT?=bin
OPT_DEFS += -DMCU_$(MCU_FAMILY)
else ifdef ARM_ATSAM
PLATFORM=ARM_ATSAM
PLATFORM_KEY=arm_atsam
FIRMWARE_FORMAT=bin
else
PLATFORM=AVR
PLATFORM_KEY=avr
FIRMWARE_FORMAT?=hex
endif
# Find all of the config.h files and add them to our CONFIG_H define.
CONFIG_H :=
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/config.h)","")
CONFIG_H += $(KEYBOARD_PATH_5)/config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/config.h)","")
CONFIG_H += $(KEYBOARD_PATH_4)/config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/config.h)","")
CONFIG_H += $(KEYBOARD_PATH_3)/config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/config.h)","")
CONFIG_H += $(KEYBOARD_PATH_2)/config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/config.h)","")
CONFIG_H += $(KEYBOARD_PATH_1)/config.h
endif
POST_CONFIG_H :=
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/post_config.h)","")
POST_CONFIG_H += $(KEYBOARD_PATH_1)/post_config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/post_config.h)","")
POST_CONFIG_H += $(KEYBOARD_PATH_2)/post_config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/post_config.h)","")
POST_CONFIG_H += $(KEYBOARD_PATH_3)/post_config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/post_config.h)","")
POST_CONFIG_H += $(KEYBOARD_PATH_4)/post_config.h
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/post_config.h)","")
POST_CONFIG_H += $(KEYBOARD_PATH_5)/post_config.h
endif
# Pull in stuff from info.json
INFO_JSON_FILES :=
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/info.json)","")
INFO_JSON_FILES += $(KEYBOARD_PATH_1)/info.json
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/info.json)","")
INFO_JSON_FILES += $(KEYBOARD_PATH_2)/info.json
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/info.json)","")
INFO_JSON_FILES += $(KEYBOARD_PATH_3)/info.json
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/info.json)","")
INFO_JSON_FILES += $(KEYBOARD_PATH_4)/info.json
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/info.json)","")
INFO_JSON_FILES += $(KEYBOARD_PATH_5)/info.json
endif
CONFIG_H += $(KEYBOARD_OUTPUT)/src/info_config.h $(KEYBOARD_OUTPUT)/src/layouts.h
$(KEYBOARD_OUTPUT)/src/info_config.h: $(INFO_JSON_FILES)
@$(SILENT) || printf "$(MSG_GENERATING) $@" | $(AWK_CMD)
$(eval CMD=$(QMK_BIN) generate-config-h --quiet --keyboard $(KEYBOARD) --output $(KEYBOARD_OUTPUT)/src/info_config.h)
@$(BUILD_CMD)
$(KEYBOARD_OUTPUT)/src/default_keyboard.h: $(INFO_JSON_FILES)
@$(SILENT) || printf "$(MSG_GENERATING) $@" | $(AWK_CMD)
$(eval CMD=$(QMK_BIN) generate-keyboard-h --quiet --keyboard $(KEYBOARD) --output $(KEYBOARD_OUTPUT)/src/default_keyboard.h)
@$(BUILD_CMD)
$(KEYBOARD_OUTPUT)/src/layouts.h: $(INFO_JSON_FILES)
@$(SILENT) || printf "$(MSG_GENERATING) $@" | $(AWK_CMD)
$(eval CMD=$(QMK_BIN) generate-layouts --quiet --keyboard $(KEYBOARD) --output $(KEYBOARD_OUTPUT)/src/layouts.h)
@$(BUILD_CMD)
generated-files: $(KEYBOARD_OUTPUT)/src/info_config.h $(KEYBOARD_OUTPUT)/src/default_keyboard.h $(KEYBOARD_OUTPUT)/src/layouts.h
.INTERMEDIATE : generated-files
# Userspace setup and definitions
ifeq ("$(USER_NAME)","")
USER_NAME := $(KEYMAP)
endif
USER_PATH := users/$(USER_NAME)
# Pull in user level rules.mk
-include $(USER_PATH)/rules.mk
ifneq ("$(wildcard $(USER_PATH)/config.h)","")
CONFIG_H += $(USER_PATH)/config.h
endif
ifneq ("$(wildcard $(USER_PATH)/post_config.h)","")
POST_CONFIG_H += $(USER_PATH)/post_config.h
endif
# Disable features that a keyboard doesn't support
-include $(BUILDDEFS_PATH)/disable_features.mk
# Pull in post_rules.mk files from all our subfolders
ifneq ("$(wildcard $(KEYBOARD_PATH_1)/post_rules.mk)","")
include $(KEYBOARD_PATH_1)/post_rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_2)/post_rules.mk)","")
include $(KEYBOARD_PATH_2)/post_rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_3)/post_rules.mk)","")
include $(KEYBOARD_PATH_3)/post_rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_4)/post_rules.mk)","")
include $(KEYBOARD_PATH_4)/post_rules.mk
endif
ifneq ("$(wildcard $(KEYBOARD_PATH_5)/post_rules.mk)","")
include $(KEYBOARD_PATH_5)/post_rules.mk
endif
ifneq ("$(wildcard $(KEYMAP_PATH)/config.h)","")
CONFIG_H += $(KEYMAP_PATH)/config.h
endif
ifneq ("$(KEYMAP_H)","")
CONFIG_H += $(KEYMAP_H)
endif
# project specific files
SRC += \
$(KEYBOARD_SRC) \
$(KEYMAP_C) \
$(QUANTUM_SRC) \
$(QUANTUM_DIR)/main.c \
# Optimize size but this may cause error "relocation truncated to fit"
#EXTRALDFLAGS = -Wl,--relax
# Search Path
VPATH += $(KEYMAP_PATH)
VPATH += $(USER_PATH)
VPATH += $(KEYBOARD_PATHS)
VPATH += $(COMMON_VPATH)
VPATH += $(KEYBOARD_OUTPUT)/src
VPATH += $(KEYMAP_OUTPUT)/src
include $(BUILDDEFS_PATH)/common_features.mk
include $(BUILDDEFS_PATH)/generic_features.mk
include $(TMK_PATH)/protocol.mk
include $(PLATFORM_PATH)/common.mk
include $(BUILDDEFS_PATH)/bootloader.mk
SRC += $(patsubst %.c,%.clib,$(LIB_SRC))
SRC += $(patsubst %.c,%.clib,$(QUANTUM_LIB_SRC))
SRC += $(TMK_COMMON_SRC)
OPT_DEFS += $(TMK_COMMON_DEFS)
EXTRALDFLAGS += $(TMK_COMMON_LDFLAGS)
SKIP_COMPILE := no
ifneq ($(REQUIRE_PLATFORM_KEY),)
ifneq ($(REQUIRE_PLATFORM_KEY),$(PLATFORM_KEY))
SKIP_COMPILE := yes
endif
endif
include $(PLATFORM_PATH)/$(PLATFORM_KEY)/platform.mk
-include $(PLATFORM_PATH)/$(PLATFORM_KEY)/flash.mk
ifneq ($(strip $(PROTOCOL)),)
include $(TMK_PATH)/protocol/$(strip $(shell echo $(PROTOCOL) | tr '[:upper:]' '[:lower:]')).mk
else
include $(TMK_PATH)/protocol/$(PLATFORM_KEY).mk
endif
# TODO: remove this bodge?
PROJECT_DEFS := $(OPT_DEFS)
PROJECT_INC := $(VPATH) $(EXTRAINCDIRS) $(KEYBOARD_PATHS)
PROJECT_CONFIG := $(CONFIG_H)
CONFIG_H += $(POST_CONFIG_H)
ALL_CONFIGS := $(PROJECT_CONFIG) $(CONFIG_H)
OUTPUTS := $(KEYMAP_OUTPUT) $(KEYBOARD_OUTPUT)
$(KEYMAP_OUTPUT)_SRC := $(SRC)
$(KEYMAP_OUTPUT)_DEFS := $(OPT_DEFS) \
-DQMK_KEYBOARD=\"$(KEYBOARD)\" -DQMK_KEYBOARD_H=\"$(QMK_KEYBOARD_H)\" \
-DQMK_KEYMAP=\"$(KEYMAP)\" -DQMK_KEYMAP_H=\"$(KEYMAP).h\" -DQMK_KEYMAP_CONFIG_H=\"$(KEYMAP_PATH)/config.h\"
$(KEYMAP_OUTPUT)_INC := $(VPATH) $(EXTRAINCDIRS)
$(KEYMAP_OUTPUT)_CONFIG := $(CONFIG_H)
$(KEYBOARD_OUTPUT)_SRC := $(PLATFORM_SRC)
$(KEYBOARD_OUTPUT)_DEFS := $(PROJECT_DEFS)
$(KEYBOARD_OUTPUT)_INC := $(PROJECT_INC)
$(KEYBOARD_OUTPUT)_CONFIG := $(PROJECT_CONFIG)
# Default target.
ifeq ($(SKIP_COMPILE),no)
all: build check-size
else
all:
echo "skipped" >&2
endif
build: elf cpfirmware
check-size: build
check-md5: build
objs-size: build
include $(BUILDDEFS_PATH)/show_options.mk
include $(BUILDDEFS_PATH)/common_rules.mk
# Ensure we have generated files available for each of the objects
define GEN_FILES
$1: generated-files
endef
$(foreach O,$(OBJ),$(eval $(call GEN_FILES,$(patsubst %.a,%.o,$(O)))))

View File

@ -1,32 +0,0 @@
LAYOUTS_PATH := layouts
LAYOUTS_REPOS := $(patsubst %/,%,$(sort $(dir $(wildcard $(LAYOUTS_PATH)/*/))))
define SEARCH_LAYOUTS_REPO
LAYOUT_KEYMAP_PATH := $$(LAYOUTS_REPO)/$$(LAYOUT)/$$(KEYMAP)
LAYOUT_KEYMAP_JSON := $$(LAYOUT_KEYMAP_PATH)/keymap.json
LAYOUT_KEYMAP_C := $$(LAYOUT_KEYMAP_PATH)/keymap.c
ifneq ("$$(wildcard $$(LAYOUT_KEYMAP_JSON))","")
-include $$(LAYOUT_KEYMAP_PATH)/rules.mk
KEYMAP_JSON := $$(LAYOUT_KEYMAP_JSON)
KEYMAP_PATH := $$(LAYOUT_KEYMAP_PATH)
else ifneq ("$$(wildcard $$(LAYOUT_KEYMAP_C))","")
-include $$(LAYOUT_KEYMAP_PATH)/rules.mk
KEYMAP_C := $$(LAYOUT_KEYMAP_C)
KEYMAP_PATH := $$(LAYOUT_KEYMAP_PATH)
endif
endef
define SEARCH_LAYOUTS
$$(foreach LAYOUTS_REPO,$$(LAYOUTS_REPOS),$$(eval $$(call SEARCH_LAYOUTS_REPO)))
endef
ifneq ($(FORCE_LAYOUT),)
ifneq (,$(findstring $(FORCE_LAYOUT),$(LAYOUTS)))
$(info Forcing layout: $(FORCE_LAYOUT))
LAYOUTS := $(FORCE_LAYOUT)
else
$(call CATASTROPHIC_ERROR,Invalid layout,Forced layout does not exist)
endif
endif
$(foreach LAYOUT,$(LAYOUTS),$(eval $(call SEARCH_LAYOUTS)))

View File

@ -1,84 +0,0 @@
ifndef VERBOSE
.SILENT:
endif
.DEFAULT_GOAL := all
include paths.mk
include $(BUILDDEFS_PATH)/message.mk
TARGET=test/$(TEST)
GTEST_OUTPUT = $(BUILD_DIR)/gtest
TEST_OBJ = $(BUILD_DIR)/test_obj
OUTPUTS := $(TEST_OBJ)/$(TEST) $(GTEST_OUTPUT)
GTEST_INC := \
$(LIB_PATH)/googletest/googletest/include \
$(LIB_PATH)/googletest/googlemock/include
GTEST_INTERNAL_INC := \
$(LIB_PATH)/googletest/googletest \
$(LIB_PATH)/googletest/googlemock
$(GTEST_OUTPUT)_SRC := \
googletest/src/gtest-all.cc\
googlemock/src/gmock-all.cc
$(GTEST_OUTPUT)_DEFS :=
$(GTEST_OUTPUT)_INC := $(GTEST_INC) $(GTEST_INTERNAL_INC)
LDFLAGS += -lstdc++ -lpthread -shared-libgcc
CREATE_MAP := no
VPATH += \
$(LIB_PATH)/googletest \
$(LIB_PATH)/googlemock \
$(LIB_PATH)/printf
all: elf
VPATH += $(COMMON_VPATH)
PLATFORM:=TEST
PLATFORM_KEY:=test
BOOTLOADER_TYPE:=none
ifeq ($(strip $(DEBUG)), 1)
CONSOLE_ENABLE = yes
endif
ifneq ($(filter $(FULL_TESTS),$(TEST)),)
include tests/test_common/build.mk
include $(TEST_PATH)/test.mk
endif
include $(BUILDDEFS_PATH)/common_features.mk
include $(BUILDDEFS_PATH)/generic_features.mk
include $(PLATFORM_PATH)/common.mk
include $(TMK_PATH)/protocol.mk
include $(QUANTUM_PATH)/debounce/tests/rules.mk
include $(QUANTUM_PATH)/encoder/tests/rules.mk
include $(QUANTUM_PATH)/sequencer/tests/rules.mk
include $(PLATFORM_PATH)/test/rules.mk
ifneq ($(filter $(FULL_TESTS),$(TEST)),)
include $(BUILDDEFS_PATH)/build_full_test.mk
endif
$(TEST)_SRC += \
tests/test_common/main.c \
$(LIB_PATH)/printf/printf.c \
$(QUANTUM_PATH)/logging/print.c
$(TEST_OBJ)/$(TEST)_SRC := $($(TEST)_SRC)
$(TEST_OBJ)/$(TEST)_INC := $($(TEST)_INC) $(VPATH) $(GTEST_INC)
$(TEST_OBJ)/$(TEST)_DEFS := $($(TEST)_DEFS)
$(TEST_OBJ)/$(TEST)_CONFIG := $($(TEST)_CONFIG)
include $(PLATFORM_PATH)/$(PLATFORM_KEY)/platform.mk
include $(BUILDDEFS_PATH)/common_rules.mk
$(shell mkdir -p $(BUILD_DIR)/test 2>/dev/null)
$(shell mkdir -p $(TEST_OBJ) 2>/dev/null)

View File

@ -1,816 +0,0 @@
# Copyright 2017 Fred Sundvik
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
QUANTUM_SRC += \
$(QUANTUM_DIR)/quantum.c \
$(QUANTUM_DIR)/send_string.c \
$(QUANTUM_DIR)/bitwise.c \
$(QUANTUM_DIR)/led.c \
$(QUANTUM_DIR)/action.c \
$(QUANTUM_DIR)/action_layer.c \
$(QUANTUM_DIR)/action_tapping.c \
$(QUANTUM_DIR)/action_util.c \
$(QUANTUM_DIR)/eeconfig.c \
$(QUANTUM_DIR)/keyboard.c \
$(QUANTUM_DIR)/keymap_common.c \
$(QUANTUM_DIR)/keycode_config.c \
$(QUANTUM_DIR)/sync_timer.c \
$(QUANTUM_DIR)/logging/debug.c \
$(QUANTUM_DIR)/logging/sendchar.c \
VPATH += $(QUANTUM_DIR)/logging
# Fall back to lib/printf if there is no platform provided print
ifeq ("$(wildcard $(PLATFORM_PATH)/$(PLATFORM_KEY)/printf.mk)","")
include $(QUANTUM_PATH)/logging/print.mk
else
include $(PLATFORM_PATH)/$(PLATFORM_KEY)/printf.mk
endif
ifeq ($(strip $(DEBUG_MATRIX_SCAN_RATE_ENABLE)), yes)
OPT_DEFS += -DDEBUG_MATRIX_SCAN_RATE
CONSOLE_ENABLE = yes
else ifeq ($(strip $(DEBUG_MATRIX_SCAN_RATE_ENABLE)), api)
OPT_DEFS += -DDEBUG_MATRIX_SCAN_RATE
endif
AUDIO_ENABLE ?= no
ifeq ($(strip $(AUDIO_ENABLE)), yes)
ifeq ($(PLATFORM),CHIBIOS)
AUDIO_DRIVER ?= dac_basic
ifeq ($(strip $(AUDIO_DRIVER)), dac_basic)
OPT_DEFS += -DAUDIO_DRIVER_DAC
else ifeq ($(strip $(AUDIO_DRIVER)), dac_additive)
OPT_DEFS += -DAUDIO_DRIVER_DAC
## stm32f2 and above have a usable DAC unit, f1 do not, and need to use pwm instead
else ifeq ($(strip $(AUDIO_DRIVER)), pwm_software)
OPT_DEFS += -DAUDIO_DRIVER_PWM
else ifeq ($(strip $(AUDIO_DRIVER)), pwm_hardware)
OPT_DEFS += -DAUDIO_DRIVER_PWM
endif
else
# fallback for all other platforms is pwm
AUDIO_DRIVER ?= pwm_hardware
OPT_DEFS += -DAUDIO_DRIVER_PWM
endif
OPT_DEFS += -DAUDIO_ENABLE
MUSIC_ENABLE = yes
SRC += $(QUANTUM_DIR)/process_keycode/process_audio.c
SRC += $(QUANTUM_DIR)/process_keycode/process_clicky.c
SRC += $(QUANTUM_DIR)/audio/audio.c ## common audio code, hardware agnostic
SRC += $(PLATFORM_PATH)/$(PLATFORM_KEY)/$(DRIVER_DIR)/audio_$(strip $(AUDIO_DRIVER)).c
SRC += $(QUANTUM_DIR)/audio/voices.c
SRC += $(QUANTUM_DIR)/audio/luts.c
endif
ifeq ($(strip $(SEQUENCER_ENABLE)), yes)
OPT_DEFS += -DSEQUENCER_ENABLE
MUSIC_ENABLE = yes
SRC += $(QUANTUM_DIR)/sequencer/sequencer.c
SRC += $(QUANTUM_DIR)/process_keycode/process_sequencer.c
endif
ifeq ($(strip $(MIDI_ENABLE)), yes)
OPT_DEFS += -DMIDI_ENABLE
MUSIC_ENABLE = yes
SRC += $(QUANTUM_DIR)/process_keycode/process_midi.c
endif
MUSIC_ENABLE ?= no
ifeq ($(MUSIC_ENABLE), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_music.c
endif
ifeq ($(strip $(STENO_ENABLE)), yes)
OPT_DEFS += -DSTENO_ENABLE
VIRTSER_ENABLE ?= yes
SRC += $(QUANTUM_DIR)/process_keycode/process_steno.c
endif
ifeq ($(strip $(VIRTSER_ENABLE)), yes)
OPT_DEFS += -DVIRTSER_ENABLE
endif
ifeq ($(strip $(MOUSEKEY_ENABLE)), yes)
OPT_DEFS += -DMOUSEKEY_ENABLE
MOUSE_ENABLE := yes
SRC += $(QUANTUM_DIR)/mousekey.c
endif
VALID_POINTING_DEVICE_DRIVER_TYPES := adns5050 adns9800 analog_joystick cirque_pinnacle_i2c cirque_pinnacle_spi pmw3360 pmw3389 pimoroni_trackball custom
ifeq ($(strip $(POINTING_DEVICE_ENABLE)), yes)
ifeq ($(filter $(POINTING_DEVICE_DRIVER),$(VALID_POINTING_DEVICE_DRIVER_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid POINTING_DEVICE_DRIVER,POINTING_DEVICE_DRIVER="$(POINTING_DEVICE_DRIVER)" is not a valid pointing device type)
else
OPT_DEFS += -DPOINTING_DEVICE_ENABLE
MOUSE_ENABLE := yes
SRC += $(QUANTUM_DIR)/pointing_device.c
SRC += $(QUANTUM_DIR)/pointing_device_drivers.c
ifneq ($(strip $(POINTING_DEVICE_DRIVER)), custom)
SRC += drivers/sensors/$(strip $(POINTING_DEVICE_DRIVER)).c
OPT_DEFS += -DPOINTING_DEVICE_DRIVER_$(strip $(shell echo $(POINTING_DEVICE_DRIVER) | tr '[:lower:]' '[:upper:]'))
endif
OPT_DEFS += -DPOINTING_DEVICE_DRIVER_$(strip $(POINTING_DEVICE_DRIVER))
ifeq ($(strip $(POINTING_DEVICE_DRIVER)), adns9800)
OPT_DEFS += -DSTM32_SPI -DHAL_USE_SPI=TRUE
QUANTUM_LIB_SRC += spi_master.c
else ifeq ($(strip $(POINTING_DEVICE_DRIVER)), analog_joystick)
OPT_DEFS += -DSTM32_ADC -DHAL_USE_ADC=TRUE
LIB_SRC += analog.c
else ifeq ($(strip $(POINTING_DEVICE_DRIVER)), cirque_pinnacle_i2c)
OPT_DEFS += -DSTM32_I2C -DHAL_USE_I2C=TRUE
SRC += drivers/sensors/cirque_pinnacle.c
QUANTUM_LIB_SRC += i2c_master.c
else ifeq ($(strip $(POINTING_DEVICE_DRIVER)), cirque_pinnacle_spi)
OPT_DEFS += -DSTM32_SPI -DHAL_USE_SPI=TRUE
SRC += drivers/sensors/cirque_pinnacle.c
QUANTUM_LIB_SRC += spi_master.c
else ifeq ($(strip $(POINTING_DEVICE_DRIVER)), pimoroni_trackball)
OPT_DEFS += -DSTM32_SPI -DHAL_USE_I2C=TRUE
QUANTUM_LIB_SRC += i2c_master.c
else ifeq ($(strip $(POINTING_DEVICE_DRIVER)), pmw3360)
OPT_DEFS += -DSTM32_SPI -DHAL_USE_SPI=TRUE
QUANTUM_LIB_SRC += spi_master.c
else ifeq ($(strip $(POINTING_DEVICE_DRIVER)), pmw3389)
OPT_DEFS += -DSTM32_SPI -DHAL_USE_SPI=TRUE
QUANTUM_LIB_SRC += spi_master.c
endif
endif
endif
VALID_EEPROM_DRIVER_TYPES := vendor custom transient i2c spi
EEPROM_DRIVER ?= vendor
ifeq ($(filter $(EEPROM_DRIVER),$(VALID_EEPROM_DRIVER_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid EEPROM_DRIVER,EEPROM_DRIVER="$(EEPROM_DRIVER)" is not a valid EEPROM driver)
else
OPT_DEFS += -DEEPROM_ENABLE
ifeq ($(strip $(EEPROM_DRIVER)), custom)
# Custom EEPROM implementation -- only needs to implement init/erase/read_block/write_block
OPT_DEFS += -DEEPROM_DRIVER -DEEPROM_CUSTOM
COMMON_VPATH += $(DRIVER_PATH)/eeprom
SRC += eeprom_driver.c
else ifeq ($(strip $(EEPROM_DRIVER)), i2c)
# External I2C EEPROM implementation
OPT_DEFS += -DEEPROM_DRIVER -DEEPROM_I2C
COMMON_VPATH += $(DRIVER_PATH)/eeprom
QUANTUM_LIB_SRC += i2c_master.c
SRC += eeprom_driver.c eeprom_i2c.c
else ifeq ($(strip $(EEPROM_DRIVER)), spi)
# External SPI EEPROM implementation
OPT_DEFS += -DEEPROM_DRIVER -DEEPROM_SPI
COMMON_VPATH += $(DRIVER_PATH)/eeprom
QUANTUM_LIB_SRC += spi_master.c
SRC += eeprom_driver.c eeprom_spi.c
else ifeq ($(strip $(EEPROM_DRIVER)), transient)
# Transient EEPROM implementation -- no data storage but provides runtime area for it
OPT_DEFS += -DEEPROM_DRIVER -DEEPROM_TRANSIENT
COMMON_VPATH += $(DRIVER_PATH)/eeprom
SRC += eeprom_driver.c eeprom_transient.c
else ifeq ($(strip $(EEPROM_DRIVER)), vendor)
# Vendor-implemented EEPROM
OPT_DEFS += -DEEPROM_VENDOR
ifeq ($(PLATFORM),AVR)
# Automatically provided by avr-libc, nothing required
else ifeq ($(PLATFORM),CHIBIOS)
ifneq ($(filter STM32F3xx_% STM32F1xx_% %_STM32F401xC %_STM32F401xE %_STM32F405xG %_STM32F411xE %_STM32F072xB %_STM32F042x6 %_GD32VF103xB %_GD32VF103x8, $(MCU_SERIES)_$(MCU_LDSCRIPT)),)
# Emulated EEPROM
OPT_DEFS += -DEEPROM_DRIVER -DEEPROM_STM32_FLASH_EMULATED
COMMON_VPATH += $(DRIVER_PATH)/eeprom
SRC += eeprom_driver.c
SRC += $(PLATFORM_COMMON_DIR)/eeprom_stm32.c
SRC += $(PLATFORM_COMMON_DIR)/flash_stm32.c
else ifneq ($(filter $(MCU_SERIES),STM32L0xx STM32L1xx),)
# True EEPROM on STM32L0xx, L1xx
OPT_DEFS += -DEEPROM_DRIVER -DEEPROM_STM32_L0_L1
COMMON_VPATH += $(DRIVER_PATH)/eeprom
COMMON_VPATH += $(PLATFORM_PATH)/$(PLATFORM_KEY)/$(DRIVER_DIR)/eeprom
SRC += eeprom_driver.c
SRC += eeprom_stm32_L0_L1.c
else ifneq ($(filter $(MCU_SERIES),KL2x K20x),)
# Teensy EEPROM implementations
OPT_DEFS += -DEEPROM_TEENSY
SRC += eeprom_teensy.c
else
# Fall back to transient, i.e. non-persistent
OPT_DEFS += -DEEPROM_DRIVER -DEEPROM_TRANSIENT
COMMON_VPATH += $(DRIVER_PATH)/eeprom
SRC += eeprom_driver.c eeprom_transient.c
endif
else ifeq ($(PLATFORM),ARM_ATSAM)
# arm_atsam EEPROM
OPT_DEFS += -DEEPROM_SAMD
SRC += $(PLATFORM_COMMON_DIR)/eeprom_samd.c
else ifeq ($(PLATFORM),TEST)
# Test harness "EEPROM"
OPT_DEFS += -DEEPROM_TEST_HARNESS
SRC += $(PLATFORM_COMMON_DIR)/eeprom.c
endif
endif
endif
VALID_FLASH_DRIVER_TYPES := spi
FLASH_DRIVER ?= no
ifneq ($(strip $(FLASH_DRIVER)), no)
ifeq ($(filter $(FLASH_DRIVER),$(VALID_FLASH_DRIVER_TYPES)),)
$(error FLASH_DRIVER="$(FLASH_DRIVER)" is not a valid FLASH driver)
else
OPT_DEFS += -DFLASH_ENABLE
ifeq ($(strip $(FLASH_DRIVER)), spi)
OPT_DEFS += -DFLASH_DRIVER -DFLASH_SPI
COMMON_VPATH += $(DRIVER_PATH)/flash
SRC += flash_spi.c
endif
endif
endif
RGBLIGHT_ENABLE ?= no
VALID_RGBLIGHT_TYPES := WS2812 APA102 custom
ifeq ($(strip $(RGBLIGHT_CUSTOM_DRIVER)), yes)
RGBLIGHT_DRIVER ?= custom
endif
ifeq ($(strip $(RGBLIGHT_ENABLE)), yes)
RGBLIGHT_DRIVER ?= WS2812
ifeq ($(filter $(RGBLIGHT_DRIVER),$(VALID_RGBLIGHT_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid RGBLIGHT_DRIVER,RGBLIGHT_DRIVER="$(RGBLIGHT_DRIVER)" is not a valid RGB type)
else
COMMON_VPATH += $(QUANTUM_DIR)/rgblight
POST_CONFIG_H += $(QUANTUM_DIR)/rgblight/rgblight_post_config.h
OPT_DEFS += -DRGBLIGHT_ENABLE
SRC += $(QUANTUM_DIR)/color.c
SRC += $(QUANTUM_DIR)/rgblight/rgblight.c
CIE1931_CURVE := yes
RGB_KEYCODES_ENABLE := yes
endif
ifeq ($(strip $(RGBLIGHT_DRIVER)), WS2812)
WS2812_DRIVER_REQUIRED := yes
endif
ifeq ($(strip $(RGBLIGHT_DRIVER)), APA102)
APA102_DRIVER_REQUIRED := yes
endif
ifeq ($(strip $(RGBLIGHT_DRIVER)), custom)
OPT_DEFS += -DRGBLIGHT_CUSTOM_DRIVER
endif
endif
LED_MATRIX_ENABLE ?= no
VALID_LED_MATRIX_TYPES := IS31FL3731 IS31FL3742A IS31FL3743A IS31FL3745 IS31FL3746A custom
# TODO: IS31FL3733 IS31FL3737 IS31FL3741
ifeq ($(strip $(LED_MATRIX_ENABLE)), yes)
ifeq ($(filter $(LED_MATRIX_DRIVER),$(VALID_LED_MATRIX_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid LED_MATRIX_DRIVER,LED_MATRIX_DRIVER="$(LED_MATRIX_DRIVER)" is not a valid matrix type)
endif
OPT_DEFS += -DLED_MATRIX_ENABLE
ifneq (,$(filter $(MCU), atmega16u2 atmega32u2 at90usb162))
# ATmegaxxU2 does not have hardware MUL instruction - lib8tion must be told to use software multiplication routines
OPT_DEFS += -DLIB8_ATTINY
endif
COMMON_VPATH += $(QUANTUM_DIR)/led_matrix
COMMON_VPATH += $(QUANTUM_DIR)/led_matrix/animations
COMMON_VPATH += $(QUANTUM_DIR)/led_matrix/animations/runners
SRC += $(QUANTUM_DIR)/process_keycode/process_backlight.c
SRC += $(QUANTUM_DIR)/led_matrix/led_matrix.c
SRC += $(QUANTUM_DIR)/led_matrix/led_matrix_drivers.c
SRC += $(LIB_PATH)/lib8tion/lib8tion.c
CIE1931_CURVE := yes
ifeq ($(strip $(LED_MATRIX_DRIVER)), IS31FL3731)
OPT_DEFS += -DIS31FL3731 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31fl3731-simple.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(LED_MATRIX_DRIVER)), IS31FL3742A)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3742A -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(LED_MATRIX_DRIVER)), IS31FL3743A)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3743A -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(LED_MATRIX_DRIVER)), IS31FL3745)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3745 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(LED_MATRIX_DRIVER)), IS31FL3746A)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3746A -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
endif
RGB_MATRIX_ENABLE ?= no
VALID_RGB_MATRIX_TYPES := AW20216 IS31FL3731 IS31FL3733 IS31FL3737 IS31FL3741 IS31FL3742A IS31FL3743A IS31FL3745 IS31FL3746A CKLED2001 WS2812 custom
ifeq ($(strip $(RGB_MATRIX_ENABLE)), yes)
ifeq ($(filter $(RGB_MATRIX_DRIVER),$(VALID_RGB_MATRIX_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid RGB_MATRIX_DRIVER,RGB_MATRIX_DRIVER="$(RGB_MATRIX_DRIVER)" is not a valid matrix type)
endif
OPT_DEFS += -DRGB_MATRIX_ENABLE
ifneq (,$(filter $(MCU), atmega16u2 atmega32u2 at90usb162))
# ATmegaxxU2 does not have hardware MUL instruction - lib8tion must be told to use software multiplication routines
OPT_DEFS += -DLIB8_ATTINY
endif
COMMON_VPATH += $(QUANTUM_DIR)/rgb_matrix
COMMON_VPATH += $(QUANTUM_DIR)/rgb_matrix/animations
COMMON_VPATH += $(QUANTUM_DIR)/rgb_matrix/animations/runners
SRC += $(QUANTUM_DIR)/color.c
SRC += $(QUANTUM_DIR)/rgb_matrix/rgb_matrix.c
SRC += $(QUANTUM_DIR)/rgb_matrix/rgb_matrix_drivers.c
SRC += $(LIB_PATH)/lib8tion/lib8tion.c
CIE1931_CURVE := yes
RGB_KEYCODES_ENABLE := yes
ifeq ($(strip $(RGB_MATRIX_DRIVER)), AW20216)
OPT_DEFS += -DAW20216 -DSTM32_SPI -DHAL_USE_SPI=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led
SRC += aw20216.c
QUANTUM_LIB_SRC += spi_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3731)
OPT_DEFS += -DIS31FL3731 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31fl3731.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3733)
OPT_DEFS += -DIS31FL3733 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31fl3733.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3737)
OPT_DEFS += -DIS31FL3737 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31fl3737.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3741)
OPT_DEFS += -DIS31FL3741 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31fl3741.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3742A)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3742A -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3743A)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3743A -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3745)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3745 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), IS31FL3746A)
OPT_DEFS += -DIS31FLCOMMON -DIS31FL3746A -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led/issi
SRC += is31flcommon.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), CKLED2001)
OPT_DEFS += -DCKLED2001 -DSTM32_I2C -DHAL_USE_I2C=TRUE
COMMON_VPATH += $(DRIVER_PATH)/led
SRC += ckled2001.c
QUANTUM_LIB_SRC += i2c_master.c
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), WS2812)
OPT_DEFS += -DWS2812
WS2812_DRIVER_REQUIRED := yes
endif
ifeq ($(strip $(RGB_MATRIX_DRIVER)), APA102)
OPT_DEFS += -DAPA102
APA102_DRIVER_REQUIRED := yes
endif
ifeq ($(strip $(RGB_MATRIX_CUSTOM_KB)), yes)
OPT_DEFS += -DRGB_MATRIX_CUSTOM_KB
endif
ifeq ($(strip $(RGB_MATRIX_CUSTOM_USER)), yes)
OPT_DEFS += -DRGB_MATRIX_CUSTOM_USER
endif
endif
ifeq ($(strip $(RGB_KEYCODES_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_rgb.c
endif
ifeq ($(strip $(PRINTING_ENABLE)), yes)
OPT_DEFS += -DPRINTING_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_printer.c
QUANTUM_LIB_SRC += uart.c
endif
VARIABLE_TRACE ?= no
ifneq ($(strip $(VARIABLE_TRACE)),no)
SRC += $(QUANTUM_DIR)/variable_trace.c
OPT_DEFS += -DNUM_TRACED_VARIABLES=$(strip $(VARIABLE_TRACE))
ifneq ($(strip $(MAX_VARIABLE_TRACE_SIZE)),)
OPT_DEFS += -DMAX_VARIABLE_TRACE_SIZE=$(strip $(MAX_VARIABLE_TRACE_SIZE))
endif
endif
ifeq ($(strip $(SLEEP_LED_ENABLE)), yes)
SRC += $(PLATFORM_COMMON_DIR)/sleep_led.c
OPT_DEFS += -DSLEEP_LED_ENABLE
NO_SUSPEND_POWER_DOWN := yes
endif
VALID_BACKLIGHT_TYPES := pwm timer software custom
BACKLIGHT_ENABLE ?= no
ifeq ($(strip $(CONVERT_TO_PROTON_C)), yes)
BACKLIGHT_DRIVER ?= software
else
BACKLIGHT_DRIVER ?= pwm
endif
ifeq ($(strip $(BACKLIGHT_ENABLE)), yes)
ifeq ($(filter $(BACKLIGHT_DRIVER),$(VALID_BACKLIGHT_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid BACKLIGHT_DRIVER,BACKLIGHT_DRIVER="$(BACKLIGHT_DRIVER)" is not a valid backlight type)
endif
COMMON_VPATH += $(QUANTUM_DIR)/backlight
SRC += $(QUANTUM_DIR)/backlight/backlight.c
SRC += $(QUANTUM_DIR)/process_keycode/process_backlight.c
OPT_DEFS += -DBACKLIGHT_ENABLE
ifeq ($(strip $(BACKLIGHT_DRIVER)), custom)
OPT_DEFS += -DBACKLIGHT_CUSTOM_DRIVER
else
SRC += $(QUANTUM_DIR)/backlight/backlight_driver_common.c
ifeq ($(strip $(BACKLIGHT_DRIVER)), pwm)
SRC += $(QUANTUM_DIR)/backlight/backlight_$(PLATFORM_KEY).c
else
SRC += $(QUANTUM_DIR)/backlight/backlight_$(strip $(BACKLIGHT_DRIVER)).c
endif
endif
endif
VALID_WS2812_DRIVER_TYPES := bitbang pwm spi i2c
WS2812_DRIVER ?= bitbang
ifeq ($(strip $(WS2812_DRIVER_REQUIRED)), yes)
ifeq ($(filter $(WS2812_DRIVER),$(VALID_WS2812_DRIVER_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid WS2812_DRIVER,WS2812_DRIVER="$(WS2812_DRIVER)" is not a valid WS2812 driver)
endif
OPT_DEFS += -DWS2812_DRIVER_$(strip $(shell echo $(WS2812_DRIVER) | tr '[:lower:]' '[:upper:]'))
ifeq ($(strip $(WS2812_DRIVER)), bitbang)
SRC += ws2812.c
else
SRC += ws2812_$(strip $(WS2812_DRIVER)).c
ifeq ($(strip $(PLATFORM)), CHIBIOS)
ifeq ($(strip $(WS2812_DRIVER)), pwm)
OPT_DEFS += -DSTM32_DMA_REQUIRED=TRUE
endif
endif
endif
# add extra deps
ifeq ($(strip $(WS2812_DRIVER)), i2c)
QUANTUM_LIB_SRC += i2c_master.c
endif
endif
ifeq ($(strip $(APA102_DRIVER_REQUIRED)), yes)
COMMON_VPATH += $(DRIVER_PATH)/led
SRC += apa102.c
endif
ifeq ($(strip $(CIE1931_CURVE)), yes)
OPT_DEFS += -DUSE_CIE1931_CURVE
LED_TABLES := yes
endif
ifeq ($(strip $(LED_TABLES)), yes)
SRC += $(QUANTUM_DIR)/led_tables.c
endif
ifeq ($(strip $(TERMINAL_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_terminal.c
OPT_DEFS += -DTERMINAL_ENABLE
OPT_DEFS += -DUSER_PRINT
endif
ifeq ($(strip $(VIA_ENABLE)), yes)
DYNAMIC_KEYMAP_ENABLE := yes
RAW_ENABLE := yes
BOOTMAGIC_ENABLE := yes
SRC += $(QUANTUM_DIR)/via.c
OPT_DEFS += -DVIA_ENABLE
endif
VALID_MAGIC_TYPES := yes
BOOTMAGIC_ENABLE ?= no
ifneq ($(strip $(BOOTMAGIC_ENABLE)), no)
ifeq ($(filter $(BOOTMAGIC_ENABLE),$(VALID_MAGIC_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid BOOTMAGIC_ENABLE,BOOTMAGIC_ENABLE="$(BOOTMAGIC_ENABLE)" is not a valid type of magic)
endif
ifneq ($(strip $(BOOTMAGIC_ENABLE)), no)
OPT_DEFS += -DBOOTMAGIC_LITE
QUANTUM_SRC += $(QUANTUM_DIR)/bootmagic/bootmagic_lite.c
endif
endif
COMMON_VPATH += $(QUANTUM_DIR)/bootmagic
QUANTUM_SRC += $(QUANTUM_DIR)/bootmagic/magic.c
VALID_CUSTOM_MATRIX_TYPES:= yes lite no
CUSTOM_MATRIX ?= no
ifneq ($(strip $(CUSTOM_MATRIX)), yes)
ifeq ($(filter $(CUSTOM_MATRIX),$(VALID_CUSTOM_MATRIX_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid CUSTOM_MATRIX,CUSTOM_MATRIX="$(CUSTOM_MATRIX)" is not a valid custom matrix type)
endif
# Include common stuff for all non custom matrix users
QUANTUM_SRC += $(QUANTUM_DIR)/matrix_common.c
# if 'lite' then skip the actual matrix implementation
ifneq ($(strip $(CUSTOM_MATRIX)), lite)
# Include the standard or split matrix code if needed
QUANTUM_SRC += $(QUANTUM_DIR)/matrix.c
endif
endif
# Debounce Modules. Set DEBOUNCE_TYPE=custom if including one manually.
DEBOUNCE_TYPE ?= sym_defer_g
ifneq ($(strip $(DEBOUNCE_TYPE)), custom)
QUANTUM_SRC += $(QUANTUM_DIR)/debounce/$(strip $(DEBOUNCE_TYPE)).c
endif
ifeq ($(strip $(SPLIT_KEYBOARD)), yes)
POST_CONFIG_H += $(QUANTUM_DIR)/split_common/post_config.h
OPT_DEFS += -DSPLIT_KEYBOARD
CRC_ENABLE := yes
# Include files used by all split keyboards
QUANTUM_SRC += $(QUANTUM_DIR)/split_common/split_util.c
# Determine which (if any) transport files are required
ifneq ($(strip $(SPLIT_TRANSPORT)), custom)
QUANTUM_SRC += $(QUANTUM_DIR)/split_common/transport.c \
$(QUANTUM_DIR)/split_common/transactions.c
OPT_DEFS += -DSPLIT_COMMON_TRANSACTIONS
# Functions added via QUANTUM_LIB_SRC are only included in the final binary if they're called.
# Unused functions are pruned away, which is why we can add multiple drivers here without bloat.
ifeq ($(PLATFORM),AVR)
ifneq ($(NO_I2C),yes)
QUANTUM_LIB_SRC += i2c_master.c \
i2c_slave.c
endif
endif
SERIAL_DRIVER ?= bitbang
OPT_DEFS += -DSERIAL_DRIVER_$(strip $(shell echo $(SERIAL_DRIVER) | tr '[:lower:]' '[:upper:]'))
ifeq ($(strip $(SERIAL_DRIVER)), bitbang)
QUANTUM_LIB_SRC += serial.c
else
QUANTUM_LIB_SRC += serial_$(strip $(SERIAL_DRIVER)).c
endif
endif
COMMON_VPATH += $(QUANTUM_PATH)/split_common
endif
ifeq ($(strip $(CRC_ENABLE)), yes)
OPT_DEFS += -DCRC_ENABLE
SRC += crc.c
endif
ifeq ($(strip $(HAPTIC_ENABLE)),yes)
COMMON_VPATH += $(DRIVER_PATH)/haptic
ifneq ($(filter DRV2605L, $(HAPTIC_DRIVER)), )
SRC += DRV2605L.c
QUANTUM_LIB_SRC += i2c_master.c
OPT_DEFS += -DDRV2605L
endif
ifneq ($(filter SOLENOID, $(HAPTIC_DRIVER)), )
SRC += solenoid.c
OPT_DEFS += -DSOLENOID_ENABLE
endif
endif
ifeq ($(strip $(HD44780_ENABLE)), yes)
SRC += platforms/avr/drivers/hd44780.c
OPT_DEFS += -DHD44780_ENABLE
endif
VALID_OLED_DRIVER_TYPES := SSD1306 custom
OLED_DRIVER ?= SSD1306
ifeq ($(strip $(OLED_ENABLE)), yes)
ifeq ($(filter $(OLED_DRIVER),$(VALID_OLED_DRIVER_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid OLED_DRIVER,OLED_DRIVER="$(OLED_DRIVER)" is not a valid OLED driver)
else
OPT_DEFS += -DOLED_ENABLE
COMMON_VPATH += $(DRIVER_PATH)/oled
OPT_DEFS += -DOLED_DRIVER_$(strip $(shell echo $(OLED_DRIVER) | tr '[:lower:]' '[:upper:]'))
ifeq ($(strip $(OLED_DRIVER)), SSD1306)
SRC += ssd1306_sh1106.c
QUANTUM_LIB_SRC += i2c_master.c
endif
endif
endif
ifeq ($(strip $(ST7565_ENABLE)), yes)
OPT_DEFS += -DST7565_ENABLE
COMMON_VPATH += $(DRIVER_PATH)/oled # For glcdfont.h
COMMON_VPATH += $(DRIVER_PATH)/lcd
QUANTUM_LIB_SRC += spi_master.c
SRC += st7565.c
endif
ifeq ($(strip $(UCIS_ENABLE)), yes)
OPT_DEFS += -DUCIS_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_ucis.c
endif
ifeq ($(strip $(UNICODEMAP_ENABLE)), yes)
OPT_DEFS += -DUNICODEMAP_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_unicodemap.c
endif
ifeq ($(strip $(UNICODE_ENABLE)), yes)
OPT_DEFS += -DUNICODE_ENABLE
UNICODE_COMMON := yes
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode.c
endif
ifeq ($(strip $(UNICODE_COMMON)), yes)
OPT_DEFS += -DUNICODE_COMMON_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_unicode_common.c
endif
MAGIC_ENABLE ?= yes
ifeq ($(strip $(MAGIC_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_magic.c
OPT_DEFS += -DMAGIC_KEYCODE_ENABLE
endif
ifeq ($(strip $(AUTO_SHIFT_ENABLE)), yes)
SRC += $(QUANTUM_DIR)/process_keycode/process_auto_shift.c
OPT_DEFS += -DAUTO_SHIFT_ENABLE
ifeq ($(strip $(AUTO_SHIFT_MODIFIERS)), yes)
OPT_DEFS += -DAUTO_SHIFT_MODIFIERS
endif
endif
ifeq ($(strip $(PS2_MOUSE_ENABLE)), yes)
PS2_ENABLE := yes
SRC += ps2_mouse.c
OPT_DEFS += -DPS2_MOUSE_ENABLE
OPT_DEFS += -DMOUSE_ENABLE
endif
ifeq ($(strip $(PS2_USE_BUSYWAIT)), yes)
PS2_ENABLE := yes
SRC += ps2_busywait.c
SRC += ps2_io.c
OPT_DEFS += -DPS2_USE_BUSYWAIT
endif
ifeq ($(strip $(PS2_USE_INT)), yes)
PS2_ENABLE := yes
SRC += ps2_interrupt.c
SRC += ps2_io.c
OPT_DEFS += -DPS2_USE_INT
endif
ifeq ($(strip $(PS2_USE_USART)), yes)
PS2_ENABLE := yes
SRC += ps2_usart.c
SRC += ps2_io.c
OPT_DEFS += -DPS2_USE_USART
endif
ifeq ($(strip $(PS2_ENABLE)), yes)
COMMON_VPATH += $(DRIVER_PATH)/ps2
COMMON_VPATH += $(PLATFORM_PATH)/$(PLATFORM_KEY)/$(DRIVER_DIR)/ps2
OPT_DEFS += -DPS2_ENABLE
endif
JOYSTICK_ENABLE ?= no
VALID_JOYSTICK_TYPES := analog digital
JOYSTICK_DRIVER ?= analog
ifeq ($(strip $(JOYSTICK_ENABLE)), yes)
ifeq ($(filter $(JOYSTICK_DRIVER),$(VALID_JOYSTICK_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid JOYSTICK_DRIVER,JOYSTICK_DRIVER="$(JOYSTICK_DRIVER)" is not a valid joystick driver)
endif
OPT_DEFS += -DJOYSTICK_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_joystick.c
SRC += $(QUANTUM_DIR)/joystick.c
ifeq ($(strip $(JOYSTICK_DRIVER)), analog)
OPT_DEFS += -DANALOG_JOYSTICK_ENABLE
SRC += analog.c
endif
ifeq ($(strip $(JOYSTICK_DRIVER)), digital)
OPT_DEFS += -DDIGITAL_JOYSTICK_ENABLE
endif
endif
USBPD_ENABLE ?= no
VALID_USBPD_DRIVER_TYPES = custom vendor
USBPD_DRIVER ?= vendor
ifeq ($(strip $(USBPD_ENABLE)), yes)
ifeq ($(filter $(strip $(USBPD_DRIVER)),$(VALID_USBPD_DRIVER_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid USBPD_DRIVER,USBPD_DRIVER="$(USBPD_DRIVER)" is not a valid USBPD driver)
else
OPT_DEFS += -DUSBPD_ENABLE
ifeq ($(strip $(USBPD_DRIVER)), vendor)
# Vendor-specific implementations
OPT_DEFS += -DUSBPD_VENDOR
ifeq ($(strip $(MCU_SERIES)), STM32G4xx)
OPT_DEFS += -DUSBPD_STM32G4
SRC += usbpd_stm32g4.c
else
$(call CATASTROPHIC_ERROR,Invalid USBPD_DRIVER,There is no vendor-provided USBPD driver available)
endif
else ifeq ($(strip $(USBPD_DRIVER)), custom)
OPT_DEFS += -DUSBPD_CUSTOM
# Board designers can add their own driver to $(SRC)
endif
endif
endif
BLUETOOTH_ENABLE ?= no
VALID_BLUETOOTH_DRIVER_TYPES := BluefruitLE RN42 custom
ifeq ($(strip $(BLUETOOTH_ENABLE)), yes)
ifeq ($(filter $(strip $(BLUETOOTH_DRIVER)),$(VALID_BLUETOOTH_DRIVER_TYPES)),)
$(call CATASTROPHIC_ERROR,Invalid BLUETOOTH_DRIVER,BLUETOOTH_DRIVER="$(BLUETOOTH_DRIVER)" is not a valid Bluetooth driver type)
endif
OPT_DEFS += -DBLUETOOTH_ENABLE
NO_USB_STARTUP_CHECK := yes
COMMON_VPATH += $(DRIVER_PATH)/bluetooth
SRC += outputselect.c
ifeq ($(strip $(BLUETOOTH_DRIVER)), BluefruitLE)
OPT_DEFS += -DBLUETOOTH_BLUEFRUIT_LE
SRC += analog.c
SRC += $(DRIVER_PATH)/bluetooth/bluefruit_le.cpp
QUANTUM_LIB_SRC += spi_master.c
endif
ifeq ($(strip $(BLUETOOTH_DRIVER)), RN42)
OPT_DEFS += -DBLUETOOTH_RN42
SRC += $(DRIVER_PATH)/bluetooth/rn42.c
QUANTUM_LIB_SRC += uart.c
endif
endif

View File

@ -1,523 +0,0 @@
# Hey Emacs, this is a -*- makefile -*-
#----------------------------------------------------------------------------
# WinAVR Makefile Template written by Eric B. Weddington, Jg Wunsch, et al.
#
# Released to the Public Domain
#
# Additional material for this makefile was written by:
# Peter Fleury
# Tim Henigan
# Colin O'Flynn
# Reiner Patommel
# Markus Pfaff
# Sander Pool
# Frederik Rouleau
# Carlos Lamas
#
# Enable vpath seraching for source files only
# Without this, output files, could be read from the wrong .build directories
VPATH_SRC := $(VPATH)
vpath %.c $(VPATH_SRC)
vpath %.h $(VPATH_SRC)
vpath %.cpp $(VPATH_SRC)
vpath %.cc $(VPATH_SRC)
vpath %.hpp $(VPATH_SRC)
vpath %.S $(VPATH_SRC)
VPATH :=
# Convert all SRC to OBJ
define OBJ_FROM_SRC
$(patsubst %.c,$1/%.o,$(patsubst %.cpp,$1/%.o,$(patsubst %.cc,$1/%.o,$(patsubst %.S,$1/%.o,$(patsubst %.clib,$1/%.a,$($1_SRC))))))
endef
$(foreach OUTPUT,$(OUTPUTS),$(eval $(OUTPUT)_OBJ +=$(call OBJ_FROM_SRC,$(OUTPUT))))
# Define a list of all objects
OBJ := $(foreach OUTPUT,$(OUTPUTS),$($(OUTPUT)_OBJ))
NO_LTO_OBJ := $(filter %.a,$(OBJ))
MASTER_OUTPUT := $(firstword $(OUTPUTS))
# Output format. (can be srec, ihex, binary)
FORMAT = ihex
# Optimization level, can be [0, 1, 2, 3, s].
# 0 = turn off optimization. s = optimize for size.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT ?= s
# Compiler flag to set the C Standard level.
# c89 = "ANSI" C
# gnu89 = c89 plus GCC extensions
# c99 = ISO C99 standard (not yet fully implemented)
# gnu99 = c99 plus GCC extensions
CSTANDARD = -std=gnu99
# Place -D or -U options here for C sources
#CDEFS +=
# Place -D or -U options here for ASM sources
#ADEFS +=
# Place -D or -U options here for C++ sources
#CXXDEFS += -D__STDC_LIMIT_MACROS
#CXXDEFS += -D__STDC_CONSTANT_MACROS
#CXXDEFS +=
# Speed up recompilations by opt-in usage of ccache
USE_CCACHE ?= no
ifneq ($(USE_CCACHE),no)
CC_PREFIX ?= ccache
endif
#---------------- Compiler Options C ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
ifeq ($(strip $(LTO_ENABLE)), yes)
ifeq ($(PLATFORM),CHIBIOS)
$(info Enabling LTO on ChibiOS-targeting boards is known to have a high likelihood of failure.)
$(info If unsure, set LTO_ENABLE = no.)
endif
CDEFS += -flto
CDEFS += -DLTO_ENABLE
endif
DEBUG_ENABLE ?= yes
ifeq ($(strip $(SKIP_DEBUG_INFO)),yes)
DEBUG_ENABLE=no
endif
ifeq ($(strip $(DEBUG_ENABLE)),yes)
CFLAGS += -g$(DEBUG)
endif
CFLAGS += $(CDEFS)
CFLAGS += -O$(OPT)
# add color
ifeq ($(COLOR),true)
ifeq ("$(shell echo "int main(){}" | $(CC) -fdiagnostics-color -x c - -o /dev/null 2>&1)", "")
CFLAGS+= -fdiagnostics-color
endif
endif
CFLAGS += -Wall
CFLAGS += -Wstrict-prototypes
ifneq ($(strip $(ALLOW_WARNINGS)), yes)
CFLAGS += -Werror
endif
#CFLAGS += -mshort-calls
#CFLAGS += -fno-unit-at-a-time
#CFLAGS += -Wundef
#CFLAGS += -Wunreachable-code
#CFLAGS += -Wsign-compare
CFLAGS += $(CSTANDARD)
# This fixes lots of keyboards linking errors but SHOULDN'T BE A FINAL SOLUTION
# Fixing of multiple variable definitions must be made.
CFLAGS += -fcommon
#---------------- Compiler Options C++ ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
ifeq ($(strip $(DEBUG_ENABLE)),yes)
CXXFLAGS += -g$(DEBUG)
endif
CXXFLAGS += $(CXXDEFS)
CXXFLAGS += -O$(OPT)
# to supress "warning: only initialized variables can be placed into program memory area"
CXXFLAGS += -w
CXXFLAGS += -Wall
CXXFLAGS += -Wundef
ifneq ($(strip $(ALLOW_WARNINGS)), yes)
CXXFLAGS += -Werror
endif
#CXXFLAGS += -mshort-calls
#CXXFLAGS += -fno-unit-at-a-time
#CXXFLAGS += -Wstrict-prototypes
#CXXFLAGS += -Wunreachable-code
#CXXFLAGS += -Wsign-compare
#CXXFLAGS += $(CSTANDARD)
#---------------- Assembler Options ----------------
ASFLAGS += $(ADEFS)
ifeq ($(VERBOSE_AS_CMD),yes)
ASFLAGS += -v
endif
#---------------- Library Options ----------------
# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min
# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt
# If this is left blank, then it will use the Standard printf version.
PRINTF_LIB =
#PRINTF_LIB = $(PRINTF_LIB_MIN)
#PRINTF_LIB = $(PRINTF_LIB_FLOAT)
# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min
# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt
# If this is left blank, then it will use the Standard scanf version.
SCANF_LIB =
#SCANF_LIB = $(SCANF_LIB_MIN)
#SCANF_LIB = $(SCANF_LIB_FLOAT)
MATH_LIB = -lm
CREATE_MAP ?= yes
#---------------- Linker Options ----------------
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
#
# Comennt out "--relax" option to avoid a error such:
# (.vectors+0x30): relocation truncated to fit: R_AVR_13_PCREL against symbol `__vector_12'
#
ifeq ($(CREATE_MAP),yes)
LDFLAGS += -Wl,-Map=$(BUILD_DIR)/$(TARGET).map,--cref
endif
ifeq ($(VERBOSE_LD_CMD),yes)
LDFLAGS += -v
endif
#LDFLAGS += -Wl,--relax
LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS))
LDFLAGS += $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
#LDFLAGS += -T linker_script.x
# You can give EXTRALDFLAGS at 'make' command line.
LDFLAGS += $(EXTRALDFLAGS)
#---------------- Assembler Listings ----------------
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input.
ADHLNS_ENABLE ?= no
ifeq ($(ADHLNS_ENABLE),yes)
# Avoid "Options to '-Xassembler' do not match" - only specify assembler options at LTO link time
ifeq ($(strip $(LTO_ENABLE)), yes)
LDFLAGS += -Wa,-adhlns=$(BUILD_DIR)/$(TARGET).lst
else
CFLAGS += -Wa,-adhlns=$(@:%.o=%.lst)
CXXFLAGS += -Wa,-adhlns=$(@:%.o=%.lst)
ifeq ($(strip $(DEBUG_ENABLE)),yes)
ASFLAGS = -Wa,-adhlns=$(@:%.o=%.lst),-gstabs,--listing-cont-lines=100
else
ASFLAGS = -Wa,-adhlns=$(@:%.o=%.lst),--listing-cont-lines=100
endif
endif
endif
# Define programs and commands.
SHELL = sh
SED = sed
REMOVE = rm -f
REMOVEDIR = rmdir
COPY = cp
WINSHELL = cmd
SECHO = $(SILENT) || echo
MD5SUM ?= md5sum
ifneq ($(filter Darwin FreeBSD,$(shell uname -s)),)
MD5SUM = md5
endif
# UF2 format settings
# To produce a UF2 file in your build, add to your keyboard's rules.mk:
# FIRMWARE_FORMAT = uf2
UF2CONV = $(TOP_DIR)/util/uf2conv.py
UF2_FAMILY ?= 0x0
# Compiler flags to generate dependency files.
#GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d
GENDEPFLAGS = -MMD -MP -MF $(patsubst %.o,%.td,$@)
# Combine all necessary flags and optional flags.
# Add target processor to flags.
# You can give extra flags at 'make' command line like: make EXTRAFLAGS=-DFOO=bar
ALL_CFLAGS = $(MCUFLAGS) $(CFLAGS) $(EXTRAFLAGS)
ALL_CXXFLAGS = $(MCUFLAGS) -x c++ $(CXXFLAGS) $(EXTRAFLAGS)
ALL_ASFLAGS = $(MCUFLAGS) -x assembler-with-cpp $(ASFLAGS) $(EXTRAFLAGS)
define NO_LTO
$(patsubst %.a,%.o,$1): NOLTO_CFLAGS += -fno-lto
endef
$(foreach LOBJ, $(NO_LTO_OBJ), $(eval $(call NO_LTO,$(LOBJ))))
MOVE_DEP = mv -f $(patsubst %.o,%.td,$@) $(patsubst %.o,%.d,$@)
# For a ChibiOS build, ensure that the board files have the hook overrides injected
define BOARDSRC_INJECT_HOOKS
$(KEYBOARD_OUTPUT)/$(patsubst %.c,%.o,$(patsubst ./%,%,$1)): INIT_HOOK_CFLAGS += -include $(TOP_DIR)/tmk_core/protocol/chibios/init_hooks.h
endef
$(foreach LOBJ, $(BOARDSRC), $(eval $(call BOARDSRC_INJECT_HOOKS,$(LOBJ))))
# Add QMK specific flags
DFU_SUFFIX ?= dfu-suffix
DFU_SUFFIX_ARGS ?=
elf: $(BUILD_DIR)/$(TARGET).elf
hex: $(BUILD_DIR)/$(TARGET).hex
uf2: $(BUILD_DIR)/$(TARGET).uf2
cpfirmware: $(FIRMWARE_FORMAT)
$(SILENT) || printf "Copying $(TARGET).$(FIRMWARE_FORMAT) to qmk_firmware folder" | $(AWK_CMD)
$(COPY) $(BUILD_DIR)/$(TARGET).$(FIRMWARE_FORMAT) $(TARGET).$(FIRMWARE_FORMAT) && $(PRINT_OK)
eep: $(BUILD_DIR)/$(TARGET).eep
lss: $(BUILD_DIR)/$(TARGET).lss
sym: $(BUILD_DIR)/$(TARGET).sym
LIBNAME=lib$(TARGET).a
lib: $(LIBNAME)
# Display size of file, modifying the output so people don't mistakenly grab the hex output
BINARY_SIZE = $(SIZE) --target=$(FORMAT) $(BUILD_DIR)/$(TARGET).hex | $(SED) -e 's/\.build\/.*$$/$(TARGET).$(FIRMWARE_FORMAT)/g'
sizebefore:
@if test -f $(BUILD_DIR)/$(TARGET).hex; then $(SECHO) $(MSG_SIZE_BEFORE); $(SILENT) || $(BINARY_SIZE); \
2>/dev/null; $(SECHO); fi
sizeafter: $(BUILD_DIR)/$(TARGET).hex
@if test -f $(BUILD_DIR)/$(TARGET).hex; then $(SECHO); $(SECHO) $(MSG_SIZE_AFTER); $(SILENT) || $(BINARY_SIZE); \
2>/dev/null; $(SECHO); fi
# Display compiler version information.
gccversion :
@$(SILENT) || $(CC) --version
# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
$(eval CMD=$(HEX) $< $@)
#@$(SILENT) || printf "$(MSG_EXECUTING) '$(CMD)':\n"
@$(SILENT) || printf "$(MSG_FLASH) $@" | $(AWK_CMD)
@$(BUILD_CMD)
%.uf2: %.hex
$(eval CMD=$(UF2CONV) $(BUILD_DIR)/$(TARGET).hex -o $(BUILD_DIR)/$(TARGET).uf2 -c -f $(UF2_FAMILY) >/dev/null 2>&1)
#@$(SILENT) || printf "$(MSG_EXECUTING) '$(CMD)':\n"
@$(SILENT) || printf "$(MSG_UF2) $@" | $(AWK_CMD)
@$(BUILD_CMD)
%.eep: %.elf
$(eval CMD=$(EEP) $< $@ || exit 0)
#@$(SILENT) || printf "$(MSG_EXECUTING) '$(CMD)':\n"
@$(SILENT) || printf "$(MSG_EEPROM) $@" | $(AWK_CMD)
@$(BUILD_CMD)
# Create extended listing file from ELF output file.
%.lss: %.elf
$(eval CMD=$(OBJDUMP) -h -S -z $< > $@)
#@$(SILENT) || printf "$(MSG_EXECUTING) '$(CMD)':\n"
@$(SILENT) || printf "$(MSG_EXTENDED_LISTING) $@" | $(AWK_CMD)
@$(BUILD_CMD)
# Create a symbol table from ELF output file.
%.sym: %.elf
$(eval CMD=$(NM) -n $< > $@ )
#@$(SILENT) || printf "$(MSG_EXECUTING) '$(CMD)':\n"
@$(SILENT) || printf "$(MSG_SYMBOL_TABLE) $@" | $(AWK_CMD)
@$(BUILD_CMD)
%.bin: %.elf
$(eval CMD=$(BIN) $< $@ || exit 0)
#@$(SILENT) || printf "$(MSG_EXECUTING) '$(CMD)':\n"
@$(SILENT) || printf "$(MSG_BIN) $@" | $(AWK_CMD)
@$(BUILD_CMD)
if [ ! -z "$(DFU_SUFFIX_ARGS)" ]; then \
$(DFU_SUFFIX) $(DFU_SUFFIX_ARGS) -a $(BUILD_DIR)/$(TARGET).bin 1>/dev/null ;\
fi
#$(SILENT) || printf "$(MSG_EXECUTING) '$(DFU_SUFFIX) $(DFU_SUFFIX_ARGS) -a $(BUILD_DIR)/$(TARGET).bin 1>/dev/null':\n" ;\
$(COPY) $(BUILD_DIR)/$(TARGET).bin $(TARGET).bin;
BEGIN = gccversion sizebefore
# Link: create ELF output file from object files.
.SECONDARY : $(BUILD_DIR)/$(TARGET).elf
.PRECIOUS : $(OBJ)
# Note the obj.txt depeendency is there to force linking if a source file is deleted
%.elf: $(OBJ) $(MASTER_OUTPUT)/cflags.txt $(MASTER_OUTPUT)/ldflags.txt $(MASTER_OUTPUT)/obj.txt | $(BEGIN)
@$(SILENT) || printf "$(MSG_LINKING) $@" | $(AWK_CMD)
$(eval CMD=MAKE=$(MAKE) $(CC) $(ALL_CFLAGS) $(filter-out %.txt,$^) --output $@ $(LDFLAGS))
@$(BUILD_CMD)
define GEN_OBJRULE
$1_INCFLAGS := $$(patsubst %,-I%,$$($1_INC))
ifdef $1_CONFIG
$1_CONFIG_FLAGS += $$(patsubst %,-include %,$$($1_CONFIG))
endif
$1_CFLAGS = $$(ALL_CFLAGS) $$($1_DEFS) $$($1_INCFLAGS) $$($1_CONFIG_FLAGS) $$(NOLTO_CFLAGS)
$1_CXXFLAGS = $$(ALL_CXXFLAGS) $$($1_DEFS) $$($1_INCFLAGS) $$($1_CONFIG_FLAGS) $$(NOLTO_CFLAGS)
$1_ASFLAGS = $$(ALL_ASFLAGS) $$($1_DEFS) $$($1_INCFLAGS) $$($1_CONFIG_FLAGS)
# Compile: create object files from C source files.
$1/%.o : %.c $1/%.d $1/cflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D)
@$$(SILENT) || printf "$$(MSG_COMPILING) $$<" | $$(AWK_CMD)
$$(eval CC_EXEC := $$(CC))
ifneq ($$(VERBOSE_C_CMD),)
$$(if $$(filter $$(notdir $$(VERBOSE_C_CMD)),$$(notdir $$<)),$$(eval CC_EXEC += -v))
endif
ifneq ($$(VERBOSE_C_INCLUDE),)
$$(if $$(filter $$(notdir $$(VERBOSE_C_INCLUDE)),$$(notdir $$<)),$$(eval CC_EXEC += -H))
endif
$$(eval CMD := $$(CC_EXEC) -c $$($1_CFLAGS) $$(INIT_HOOK_CFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP))
@$$(BUILD_CMD)
ifneq ($$(DUMP_C_MACROS),)
$$(eval CMD := $$(CC) -E -dM $$($1_CFLAGS) $$(INIT_HOOK_CFLAGS) $$(GENDEPFLAGS) $$<)
@$$(if $$(filter $$(notdir $$(DUMP_C_MACROS)),$$(notdir $$<)),$$(BUILD_CMD))
endif
# Compile: create object files from C++ source files.
$1/%.o : %.cpp $1/%.d $1/cxxflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D)
@$$(SILENT) || printf "$$(MSG_COMPILING_CXX) $$<" | $$(AWK_CMD)
$$(eval CMD=$$(CC) -c $$($1_CXXFLAGS) $$(INIT_HOOK_CFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP))
@$$(BUILD_CMD)
$1/%.o : %.cc $1/%.d $1/cxxflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D)
@$$(SILENT) || printf "$$(MSG_COMPILING_CXX) $$<" | $$(AWK_CMD)
$$(eval CMD=$$(CC) -c $$($1_CXXFLAGS) $$(INIT_HOOK_CFLAGS) $$(GENDEPFLAGS) $$< -o $$@ && $$(MOVE_DEP))
@$$(BUILD_CMD)
# Assemble: create object files from assembler source files.
$1/%.o : %.S $1/asflags.txt $1/compiler.txt | $(BEGIN)
@mkdir -p $$(@D)
@$(SILENT) || printf "$$(MSG_ASSEMBLING) $$<" | $$(AWK_CMD)
$$(eval CMD=$$(CC) -c $$($1_ASFLAGS) $$< -o $$@)
@$$(BUILD_CMD)
$1/%.a : $1/%.o
@mkdir -p $$(@D)
@$(SILENT) || printf "Archiving: $$<" | $$(AWK_CMD)
$$(eval CMD=$$(AR) rcs $$@ $$<)
@$$(BUILD_CMD)
$1/force:
$1/cflags.txt: $1/force
echo '$$($1_CFLAGS)' | cmp -s - $$@ || echo '$$($1_CFLAGS)' > $$@
$1/cxxflags.txt: $1/force
echo '$$($1_CXXFLAGS)' | cmp -s - $$@ || echo '$$($1_CXXFLAGS)' > $$@
$1/asflags.txt: $1/force
echo '$$($1_ASFLAGS)' | cmp -s - $$@ || echo '$$($1_ASFLAGS)' > $$@
$1/compiler.txt: $1/force
$$(CC) --version | cmp -s - $$@ || $$(CC) --version > $$@
endef
.PRECIOUS: $(MASTER_OUTPUT)/obj.txt
$(MASTER_OUTPUT)/obj.txt: $(MASTER_OUTPUT)/force
echo '$(OBJ)' | cmp -s - $@ || echo '$(OBJ)' > $@
.PRECIOUS: $(MASTER_OUTPUT)/ldflags.txt
$(MASTER_OUTPUT)/ldflags.txt: $(MASTER_OUTPUT)/force
echo '$(LDFLAGS)' | cmp -s - $@ || echo '$(LDFLAGS)' > $@
# We have to use static rules for the .d files for some reason
DEPS = $(patsubst %.o,%.d,$(patsubst %.a,%.o,$(OBJ)))
# Keep the .d files
.PRECIOUS: $(DEPS)
# Empty rule to force recompilation if the .d file is missing
$(DEPS):
$(foreach OUTPUT,$(OUTPUTS),$(eval $(call GEN_OBJRULE,$(OUTPUT))))
# Create preprocessed source for use in sending a bug report.
%.i : %.c | $(BEGIN)
$(CC) -E -mmcu=$(MCU) $(CFLAGS) $< -o $@
# Target: clean project.
clean:
$(foreach OUTPUT,$(OUTPUTS), $(REMOVE) -r $(OUTPUT) 2>/dev/null)
$(REMOVE) $(BUILD_DIR)/$(TARGET).*
show_path:
@echo VPATH=$(VPATH)
@echo SRC=$(SRC)
@echo OBJ=$(OBJ)
dump_vars: ERROR_IF_EMPTY=""
dump_vars: ERROR_IF_NONBOOL=""
dump_vars: ERROR_IF_UNSET=""
dump_vars:
@$(foreach V,$(sort $(.VARIABLES)),$(if $(filter-out environment% default automatic,$(origin $V)),$(info $V=$($V))))
objs-size:
for i in $(OBJ); do echo $$i; done | sort | xargs $(SIZE)
ifeq ($(findstring avr-gcc,$(CC)),avr-gcc)
SIZE_MARGIN = 1024
check-size:
$(eval MAX_SIZE=$(shell n=`$(CC) -E -mmcu=$(MCU) -D__ASSEMBLER__ $(CFLAGS) $(OPT_DEFS) platforms/avr/bootloader_size.c 2> /dev/null | $(SED) -ne 's/\r//;/^#/n;/^AVR_SIZE:/,$${s/^AVR_SIZE: //;p;}'` && echo $$(($$n)) || echo 0))
$(eval CURRENT_SIZE=$(shell if [ -f $(BUILD_DIR)/$(TARGET).hex ]; then $(SIZE) --target=$(FORMAT) $(BUILD_DIR)/$(TARGET).hex | $(AWK) 'NR==2 {print $$4}'; else printf 0; fi))
$(eval FREE_SIZE=$(shell expr $(MAX_SIZE) - $(CURRENT_SIZE)))
$(eval OVER_SIZE=$(shell expr $(CURRENT_SIZE) - $(MAX_SIZE)))
$(eval PERCENT_SIZE=$(shell expr $(CURRENT_SIZE) \* 100 / $(MAX_SIZE)))
if [ $(MAX_SIZE) -gt 0 ] && [ $(CURRENT_SIZE) -gt 0 ]; then \
$(SILENT) || printf "$(MSG_CHECK_FILESIZE)" | $(AWK_CMD); \
if [ $(CURRENT_SIZE) -gt $(MAX_SIZE) ]; then \
printf "\n * $(MSG_FILE_TOO_BIG)"; $(PRINT_ERROR_PLAIN); \
else \
if [ $(FREE_SIZE) -lt $(SIZE_MARGIN) ]; then \
$(PRINT_WARNING_PLAIN); printf " * $(MSG_FILE_NEAR_LIMIT)"; \
else \
$(PRINT_OK); $(SILENT) || printf " * $(MSG_FILE_JUST_RIGHT)"; \
fi ; \
fi ; \
fi
else
check-size:
$(SILENT) || echo "$(MSG_CHECK_FILESIZE_SKIPPED)"
endif
check-md5:
$(MD5SUM) $(BUILD_DIR)/$(TARGET).$(FIRMWARE_FORMAT)
# Create build directory
$(shell mkdir -p $(BUILD_DIR) 2>/dev/null)
# Create object files directory
$(eval $(foreach OUTPUT,$(OUTPUTS),$(shell mkdir -p $(OUTPUT) 2>/dev/null)))
# Include the dependency files.
-include $(patsubst %.o,%.d,$(patsubst %.a,%.o,$(OBJ)))
# Listing of phony targets.
.PHONY : all dump_vars finish sizebefore sizeafter qmkversion \
gccversion build elf hex uf2 eep lss sym coff extcoff \
clean clean_list debug gdb-config show_path \
program teensy dfu dfu-ee dfu-start \
flash dfu-split-left dfu-split-right \
avrdude-split-left avrdude-split-right \
avrdude-loop usbasp

View File

@ -1,28 +0,0 @@
# Unconditionally disable features that a keyboard advertises it doesn't support
FEATURE_NAMES :=
FEATURE_NAMES += AUDIO
FEATURE_NAMES += BACKLIGHT
FEATURE_NAMES += BLUETOOTH
FEATURE_NAMES += DIP_SWITCH
FEATURE_NAMES += DYNAMIC_KEYMAP
FEATURE_NAMES += ENCODER
FEATURE_NAMES += HAPTIC
FEATURE_NAMES += HD44780
FEATURE_NAMES += IOS_DEVICE
FEATURE_NAMES += LCD_BACKLIGHT
FEATURE_NAMES += LCD
FEATURE_NAMES += OLED
FEATURE_NAMES += POINTING_DEVICE
FEATURE_NAMES += PRINTING
FEATURE_NAMES += PS2_MOUSE
FEATURE_NAMES += RGBLIGHT
FEATURE_NAMES += RGB_MATRIX
FEATURE_NAMES += SLEEP_LED
FEATURE_NAMES += STENO
FEATURE_NAMES += SWAP_HANDS
FEATURE_NAMES += WATCHDOG
FEATURE_NAMES += XT
$(foreach AFEATURE,$(FEATURE_NAMES),\
$(if $(filter $($(AFEATURE)_SUPPORTED),no),$(eval $(AFEATURE)_ENABLE=no)))

View File

@ -1,52 +0,0 @@
# Copyright 2021 QMK
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
SPACE_CADET_ENABLE ?= yes
GRAVE_ESC_ENABLE ?= yes
GENERIC_FEATURES = \
COMBO \
COMMAND \
DEFERRED_EXEC \
DIGITIZER \
DIP_SWITCH \
DYNAMIC_KEYMAP \
DYNAMIC_MACRO \
ENCODER \
GRAVE_ESC \
HAPTIC \
KEY_LOCK \
KEY_OVERRIDE \
LEADER \
PROGRAMMABLE_BUTTON \
SPACE_CADET \
SWAP_HANDS \
TAP_DANCE \
VELOCIKEY \
WPM \
DYNAMIC_TAPPING_TERM \
define HANDLE_GENERIC_FEATURE
# $$(info "Processing: $1_ENABLE $2.c")
SRC += $$(wildcard $$(QUANTUM_DIR)/process_keycode/process_$2.c)
SRC += $$(wildcard $$(QUANTUM_DIR)/$2.c)
OPT_DEFS += -D$1_ENABLE
endef
$(foreach F,$(GENERIC_FEATURES),\
$(if $(filter yes, $(strip $($(F)_ENABLE))),\
$(eval $(call HANDLE_GENERIC_FEATURE,$(F),$(shell echo $(F) | tr '[:upper:]' '[:lower:]'))) \
) \
)

View File

@ -1,774 +0,0 @@
MCU_ORIG := $(MCU)
ifneq ($(findstring MKL26Z64, $(MCU)),)
# Cortex version
MCU = cortex-m0plus
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = KINETIS
MCU_SERIES = KL2x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= MKL26Z64
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= kl2x
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= PJRC_TEENSY_LC
endif
ifneq ($(findstring MK20DX128, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = KINETIS
MCU_SERIES = K20x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= MK20DX128
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= k20x5
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= PJRC_TEENSY_3
endif
ifneq ($(findstring MK20DX256, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = KINETIS
MCU_SERIES = K20x
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= MK20DX256
# Startup code to use
# - it should exist in <chibios>/os/common/ports/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= k20x7
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= PJRC_TEENSY_3_1
endif
ifneq ($(findstring MK66FX1M0, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = KINETIS
MCU_SERIES = MK66F18
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= MK66FX1M0
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= MK66F18
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= PJRC_TEENSY_3_6
endif
ifneq ($(findstring STM32F042, $(MCU)),)
# Cortex version
MCU = cortex-m0
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F0xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F042x6
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f0xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F042X6
USE_FPU ?= no
# UF2 settings
UF2_FAMILY ?= STM32F0
# Stack sizes: Since this chip has limited RAM capacity, the stack area needs to be reduced.
# This ensures that the EEPROM page buffer fits into RAM
USE_PROCESS_STACKSIZE = 0x600
USE_EXCEPTIONS_STACKSIZE = 0x300
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFFC400
endif
ifneq ($(findstring STM32F072, $(MCU)),)
# Cortex version
MCU = cortex-m0
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 6
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F0xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F072xB
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f0xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F072XB
USE_FPU ?= no
# UF2 settings
UF2_FAMILY ?= STM32F0
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFFC800
endif
ifneq ($(findstring STM32F103, $(MCU)),)
# Cortex version
MCU = cortex-m3
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F1xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F103x8
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f1xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F103
USE_FPU ?= no
# UF2 settings
UF2_FAMILY ?= STM32F1
endif
ifneq ($(findstring STM32F303, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F3xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F303xC
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f3xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F303XC
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32F3
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFFD800
endif
ifneq ($(findstring STM32F401, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
ifeq ($(strip $(BOOTLOADER)), tinyuf2)
MCU_LDSCRIPT ?= STM32F401xC_tinyuf2
FIRMWARE_FORMAT ?= uf2
else
MCU_LDSCRIPT ?= STM32F401xC
endif
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= BLACKPILL_STM32_F401
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32F4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq ($(findstring STM32F405, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F405xG
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F405XG
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32F4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq ($(findstring STM32F407, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F407xE
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F407XE
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32F4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq ($(findstring STM32F411, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
ifeq ($(strip $(BOOTLOADER)), tinyuf2)
MCU_LDSCRIPT ?= STM32F411xE_tinyuf2
FIRMWARE_FORMAT ?= uf2
else
MCU_LDSCRIPT ?= STM32F411xE
endif
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= BLACKPILL_STM32_F411
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32F4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq ($(findstring STM32F446, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32F4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32F446xE
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32f4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_F446XE
USE_FPU ?= yes
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq ($(findstring STM32G431, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32G4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32G431xB
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32g4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_G431XB
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32G4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq ($(findstring STM32G474, $(MCU)),)
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32G4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32G474xE
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32g4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_G474XE
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32G4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq (,$(filter $(MCU),STM32L432 STM32L442))
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32L4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32L432xC
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32l4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_L432XC
PLATFORM_NAME ?= platform_l432
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32L4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq (,$(filter $(MCU),STM32L433 STM32L443))
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32L4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32L432xC
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32l4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_L433XC
PLATFORM_NAME ?= platform_l432
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32L4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq (,$(filter $(MCU),STM32L412 STM32L422))
# Cortex version
MCU = cortex-m4
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = STM32
MCU_SERIES = STM32L4xx
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= STM32L412xB
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= stm32l4xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_STM32_L412XB
PLATFORM_NAME ?= platform_l432
USE_FPU ?= yes
# UF2 settings
UF2_FAMILY ?= STM32L4
# Bootloader address for STM32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFF0000
endif
ifneq ($(findstring WB32F3G71, $(MCU)),)
# Cortex version
MCU = cortex-m3
# ARM version, CORTEX-M0/M1 are 6, CORTEX-M3/M4/M7 are 7
ARMV = 7
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = WB32
MCU_SERIES = WB32F3G71xx
# Linker script to use
# - it should exist either in <chibios>/os/common/ports/ARMCMx/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= WB32F3G71x9
# Startup code to use
# - it should exist in <chibios>/os/common/startup/ARMCMx/compilers/GCC/mk/
MCU_STARTUP ?= wb32f3g71xx
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= GENERIC_WB32_F3G71XX
USE_FPU ?= no
# Bootloader address for WB32 DFU
STM32_BOOTLOADER_ADDRESS ?= 0x1FFFE000
WB32_BOOTLOADER_ADDRESS ?= 0x1FFFE000
endif
ifneq ($(findstring GD32VF103, $(MCU)),)
# RISC-V
MCU = risc-v
# RISC-V extensions and abi configuration
MCU_ARCH = rv32imac
MCU_ABI = ilp32
MCU_CMODEL = medlow
## chip/board settings
# - the next two should match the directories in
# <chibios>/os/hal/ports/$(MCU_FAMILY)/$(MCU_SERIES)
MCU_FAMILY = GD32V
MCU_SERIES = GD32VF103
# Linker script to use
# - it should exist either in <chibios>/os/common/startup/RISCV-ECLIC/compilers/GCC/ld/
# or <keyboard_dir>/ld/
MCU_LDSCRIPT ?= GD32VF103xB
# Startup code to use
# - it should exist in <chibios>/os/common/startup/RISCV-ECLIC/compilers/GCC/mk/
MCU_STARTUP ?= gd32vf103
# Board: it should exist either in <chibios>/os/hal/boards/,
# <keyboard_dir>/boards/, or drivers/boards/
BOARD ?= SIPEED_LONGAN_NANO
USE_FPU ?= no
endif
ifneq (,$(filter $(MCU),at90usb162 atmega16u2 atmega32u2 atmega16u4 atmega32u4 at90usb646 at90usb647 at90usb1286 at90usb1287))
PROTOCOL = LUFA
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU ?= 16000000
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB ?= $(F_CPU)
# Interrupt driven control endpoint task
ifeq (,$(filter $(NO_INTERRUPT_CONTROL_ENDPOINT),yes))
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
endif
ifneq (,$(filter $(MCU),at90usb162 atmega16u2 atmega32u2))
NO_I2C = yes
endif
endif
ifneq (,$(filter $(MCU),atmega32a))
# MCU name for avrdude
AVRDUDE_MCU = m32
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 12000000
endif
ifneq (,$(filter $(MCU),atmega328p))
# MCU name for avrdude
AVRDUDE_MCU = m328p
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16000000
endif
ifneq (,$(filter $(MCU),atmega328))
# MCU name for avrdude
AVRDUDE_MCU = m328
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16000000
endif
ifneq (,$(filter $(MCU),attiny85))
PROTOCOL = VUSB
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
F_CPU ?= 16500000
endif

View File

@ -1,109 +0,0 @@
COLOR ?= true
ifeq ($(COLOR),true)
NO_COLOR=\033[0m
OK_COLOR=\033[32;01m
ERROR_COLOR=\033[31;01m
WARN_COLOR=\033[33;01m
SKIPPED_COLOR=\033[36;01m
BLUE=\033[0;34m
BOLD=\033[1m
endif
ifneq ($(shell echo "1 2 3" | awk '{ printf "%2s", $$3; }' 2>/dev/null)," 3")
AWK=awk
else
AWK=cat && test
endif
ON_ERROR ?= exit 1
OK_STRING=$(OK_COLOR)[OK]$(NO_COLOR)\n
ERROR_STRING=$(ERROR_COLOR)[ERRORS]$(NO_COLOR)\n
WARN_STRING=$(WARN_COLOR)[WARNINGS]$(NO_COLOR)\n
SKIPPED_STRING=$(SKIPPED_COLOR)[SKIPPED]$(NO_COLOR)\n
TAB_LOG = printf "\n%s\n\n" "$$LOG" | $(AWK) '{ sub(/^/," | "); print }'
TAB_LOG_PLAIN = printf "%s\n" "$$LOG"
AWK_STATUS = $(AWK) '{ printf " %-10s\n", $$1; }'
AWK_CMD = $(AWK) '{ printf "%-99s", $$0; }'
PRINT_ERROR = ($(SILENT) ||printf " $(ERROR_STRING)" | $(AWK_STATUS)) && $(TAB_LOG) && $(ON_ERROR)
PRINT_WARNING = ($(SILENT) || printf " $(WARN_STRING)" | $(AWK_STATUS)) && $(TAB_LOG)
PRINT_ERROR_PLAIN = ($(SILENT) ||printf " $(ERROR_STRING)" | $(AWK_STATUS)) && $(TAB_LOG_PLAIN) && $(ON_ERROR)
PRINT_WARNING_PLAIN = ($(SILENT) || printf " $(WARN_STRING)" | $(AWK_STATUS)) && $(TAB_LOG_PLAIN)
PRINT_SKIPPED_PLAIN = ($(SILENT) || printf " $(SKIPPED_STRING)" | $(AWK_STATUS))
PRINT_OK = $(SILENT) || printf " $(OK_STRING)" | $(AWK_STATUS)
BUILD_CMD = LOG=$$($(CMD) 2>&1) ; if [ $$? -gt 0 ]; then $(PRINT_ERROR); elif [ "$$LOG" != "" ] ; then $(PRINT_WARNING); else $(PRINT_OK); fi;
MAKE_MSG_FORMAT = $(AWK) '{ printf "%-118s", $$0;}'
# The UNSYNC_OUTPUT_CMD command disables the `--output-sync` for the current command, if the `--output-sync` granularity is `target` or lower.
# This is achieved by telling make to treat the current command as if it invokes a recursive make subcommand (as if by calling `$(MAKE)`).
UNSYNC_OUTPUT_CMD = +true
# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_ERRORS = $(ERROR_COLOR)Make finished with errors\n$(NO_COLOR)
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for flashing:
MSG_UF2 = Creating UF2 file for deployment:
MSG_EEPROM = Creating load file for EEPROM:
MSG_BIN = Creating binary load file for flashing:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_EXECUTING = Executing:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling:
MSG_COMPILING_CXX = Compiling:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:
MSG_GENERATING = Generating:
MSG_SUBMODULE_DIRTY = $(WARN_COLOR)WARNING:$(NO_COLOR) Some git submodules are out of date or modified.\n\
Please consider running $(BOLD)make git-submodule$(NO_COLOR).\n\n
MSG_NO_CMP = $(ERROR_COLOR)Error:$(NO_COLOR)$(BOLD) cmp command not found, please install diffutils\n$(NO_COLOR)
define GENERATE_MSG_MAKE_KB
MSG_MAKE_KB_ACTUAL := Making $$(KB_SP) with keymap $(BOLD)$$(CURRENT_KM)$(NO_COLOR)
ifneq ($$(MAKE_TARGET),)
MSG_MAKE_KB_ACTUAL += and target $(BOLD)$$(MAKE_TARGET)$(NO_COLOR)
endif
endef
MSG_MAKE_KB = $(eval $(call GENERATE_MSG_MAKE_KB))$(MSG_MAKE_KB_ACTUAL)
define GENERATE_MSG_MAKE_TEST
MSG_MAKE_TEST_ACTUAL := Making test $(BOLD)$(TEST_NAME)$(NO_COLOR)
ifneq ($$(MAKE_TARGET),)
MSG_MAKE_TEST_ACTUAL += with target $(BOLD)$$(MAKE_TARGET)$(NO_COLOR)
endif
endef
MSG_MAKE_TEST = $(eval $(call GENERATE_MSG_MAKE_TEST))$(MSG_MAKE_TEST_ACTUAL)
MSG_TEST = Testing $(BOLD)$(TEST_NAME)$(NO_COLOR)
define GENERATE_MSG_AVAILABLE_KEYMAPS
MSG_AVAILABLE_KEYMAPS_ACTUAL := Available keymaps for $(BOLD)$$(CURRENT_KB)$(NO_COLOR):
endef
MSG_AVAILABLE_KEYMAPS = $(eval $(call GENERATE_MSG_AVAILABLE_KEYMAPS))$(MSG_AVAILABLE_KEYMAPS_ACTUAL)
MSG_BOOTLOADER_NOT_FOUND_BASE = Bootloader not found. Make sure the board is in bootloader mode. See https://docs.qmk.fm/\#/newbs_flashing\n
MSG_CHECK_FILESIZE = Checking file size of $(TARGET).$(FIRMWARE_FORMAT)
MSG_CHECK_FILESIZE_SKIPPED = (Firmware size check does not yet support $(MCU_ORIG); skipping)
MSG_FILE_TOO_BIG = $(ERROR_COLOR)The firmware is too large!$(NO_COLOR) $(CURRENT_SIZE)/$(MAX_SIZE) ($(OVER_SIZE) bytes over)\n
MSG_FILE_TOO_SMALL = The firmware is too small! $(CURRENT_SIZE)/$(MAX_SIZE)\n
MSG_FILE_JUST_RIGHT = The firmware size is fine - $(CURRENT_SIZE)/$(MAX_SIZE) ($(PERCENT_SIZE)%%, $(FREE_SIZE) bytes free)\n
MSG_FILE_NEAR_LIMIT = The firmware size is approaching the maximum - $(CURRENT_SIZE)/$(MAX_SIZE) ($(PERCENT_SIZE)%%, $(FREE_SIZE) bytes free)\n
MSG_PYTHON_MISSING = $(ERROR_COLOR)ERROR:$(NO_COLOR) Cannot run \"qmk hello\"!\n\n\
Please run $(BOLD)qmk setup$(NO_COLOR) to install all the dependencies QMK requires.\n\n
MSG_FLASH_BOOTLOADER = $(WARN_COLOR)WARNING:$(NO_COLOR) This board's bootloader is not specified or is not supported by the \":flash\" target at this time.\n\n
MSG_FLASH_ARCH = $(WARN_COLOR)WARNING:$(NO_COLOR) This board's architecture is not supported by the \":flash\" target at this time.\n\n
MSG_BOOTLOADER_NOT_FOUND = $(ERROR_COLOR)ERROR:$(NO_COLOR) $(MSG_BOOTLOADER_NOT_FOUND_BASE) Trying again in 5s (Ctrl+C to cancel)\n
BOOTLOADER_RETRY_TIME ?= 0.5
MSG_BOOTLOADER_NOT_FOUND_QUICK_RETRY = $(MSG_BOOTLOADER_NOT_FOUND_BASE) Trying again every $(BOOTLOADER_RETRY_TIME)s (Ctrl+C to cancel)
define CATASTROPHIC_ERROR
$(shell printf "\n * %-99s $(ERROR_STRING)\n" "$2" >&2)
$(error $1)
endef

View File

@ -1,148 +0,0 @@
BUILD_OPTION_NAMES = \
BOOTMAGIC_ENABLE \
MOUSEKEY_ENABLE \
EXTRAKEY_ENABLE \
CONSOLE_ENABLE \
COMMAND_ENABLE \
NKRO_ENABLE \
TERMINAL_ENABLE \
CUSTOM_MATRIX \
DEBOUNCE_TYPE \
SPLIT_KEYBOARD \
DYNAMIC_KEYMAP_ENABLE \
USB_HID_ENABLE \
VIA_ENABLE
HARDWARE_OPTION_NAMES = \
SLEEP_LED_ENABLE \
BACKLIGHT_ENABLE \
BACKLIGHT_DRIVER \
RGBLIGHT_ENABLE \
RGBLIGHT_CUSTOM_DRIVER \
RGB_MATRIX_ENABLE \
RGB_MATRIX_DRIVER \
CIE1931_CURVE \
MIDI_ENABLE \
BLUETOOTH_ENABLE \
BLUETOOTH_DRIVER \
AUDIO_ENABLE \
HD44780_ENABLE \
ENCODER_ENABLE \
LED_TABLES \
POINTING_DEVICE_ENABLE \
DIP_SWITCH_ENABLE
OTHER_OPTION_NAMES = \
UNICODE_ENABLE \
UCIS_ENABLE \
UNICODEMAP_ENABLE \
UNICODE_COMMON \
AUTO_SHIFT_ENABLE \
AUTO_SHIFT_MODIFIERS \
DYNAMIC_TAPPING_TERM_ENABLE \
COMBO_ENABLE \
KEY_LOCK_ENABLE \
KEY_OVERRIDE_ENABLE \
LEADER_ENABLE \
PRINTING_ENABLE \
STENO_ENABLE \
TAP_DANCE_ENABLE \
VIRTSER_ENABLE \
OLED_ENABLE \
OLED_DRIVER \
LED_BACK_ENABLE \
LED_UNDERGLOW_ENABLE \
LED_ANIMATIONS \
IOS_DEVICE_ENABLE \
HELIX ZINC \
AUTOLOG_ENABLE \
DEBUG_ENABLE \
ENCODER_ENABLE_CUSTOM \
GERMAN_ENABLE \
HAPTIC_ENABLE \
HHKB_RN42_ENABLE \
ISSI_ENABLE \
KEYLOGGER_ENABLE \
LCD_BACKLIGHT_ENABLE \
MACROS_ENABLED \
PS2_MOUSE_ENABLE \
RAW_ENABLE \
SWAP_HANDS_ENABLE \
RING_BUFFERED_6KRO_REPORT_ENABLE \
WATCHDOG_ENABLE \
ERGOINU \
NO_USB_STARTUP_CHECK \
DISABLE_PROMICRO_LEDs \
MITOSIS_DATAGROK_BOTTOMSPACE \
MITOSIS_DATAGROK_SLOWUART \
RGB_MATRIX_KEYPRESSES \
LED_MIRRORED \
RGBLIGHT_FULL_POWER \
LTO_ENABLE \
PROGRAMMABLE_BUTTON_ENABLE
define NAME_ECHO
@printf " %-30s = %-16s # %s\\n" "$1" "$($1)" "$(origin $1)"
endef
define YAML_NAME_ECHO
@echo ' $1 : "$(strip $($1))"'
endef
.PHONY: show_build_options0 show_build_options
show_build_options0:
@echo " KEYBOARD = $(KEYBOARD)"
@echo " KEYMAP = $(KEYMAP)"
@echo " MCU = $(MCU)"
@echo " MCU_SERIES = $(MCU_SERIES)"
@echo " PLATFORM = $(PLATFORM)"
@echo " BOOTLOADER = $(BOOTLOADER)"
@echo " FIRMWARE_FORMAT = $(FIRMWARE_FORMAT)"
@echo
@echo "Build Options:"
$(foreach A_OPTION_NAME,$(sort $(BUILD_OPTION_NAMES)),\
$(call NAME_ECHO,$(A_OPTION_NAME)))
show_build_options: show_build_options0
@echo
@echo "If you want to know more, please try 'show_all_features' or 'show_full_features'"
@echo
.PHONY: show_all_features
show_all_features: show_build_options0
@echo
@echo "Hardware Options:"
$(foreach A_OPTION_NAME,$(sort $(HARDWARE_OPTION_NAMES)),\
$(if $($(A_OPTION_NAME)),$(call NAME_ECHO,$(A_OPTION_NAME))))
@echo
@echo "Other Options:"
$(foreach A_OPTION_NAME,$(sort $(OTHER_OPTION_NAMES)),\
$(if $($(A_OPTION_NAME)),$(call NAME_ECHO,$(A_OPTION_NAME))))
.PHONY: show_full_features
show_full_features: show_build_options0
@echo
@echo "Hardware Options:"
$(foreach A_OPTION_NAME,$(sort $(HARDWARE_OPTION_NAMES)),\
$(call NAME_ECHO,$(A_OPTION_NAME)))
@echo
@echo "Other Options:"
$(foreach A_OPTION_NAME,$(sort $(OTHER_OPTION_NAMES)),\
$(call NAME_ECHO,$(A_OPTION_NAME)))
.PHONY: yaml_build_options
yaml_build_options:
@echo '- KEYBOARD : "$(KEYBOARD)"'
@echo ' KEYMAP : "$(KEYMAP)"'
@echo ' MCU : "$(MCU)"'
@echo ' MCU_SERIES : "$(MCU_SERIES)"'
@echo ' PLATFORM : "$(PLATFORM)"'
@echo ' FIRMWARE_FORMAT : "$(FIRMWARE_FORMAT)"'
$(foreach A_OPTION_NAME,$(sort $(BUILD_OPTION_NAMES)),\
$(call YAML_NAME_ECHO,$(A_OPTION_NAME)))
$(foreach A_OPTION_NAME,$(sort $(HARDWARE_OPTION_NAMES)),\
$(if $($(A_OPTION_NAME)),$(call YAML_NAME_ECHO,$(A_OPTION_NAME))))
$(foreach A_OPTION_NAME,$(sort $(OTHER_OPTION_NAMES)),\
$(if $($(A_OPTION_NAME)),$(call YAML_NAME_ECHO,$(A_OPTION_NAME))))

View File

@ -1,19 +0,0 @@
TEST_LIST = $(sort $(patsubst %/test.mk,%, $(shell find $(ROOT_DIR)tests -type f -name test.mk)))
FULL_TESTS := $(notdir $(TEST_LIST))
include $(QUANTUM_PATH)/debounce/tests/testlist.mk
include $(QUANTUM_PATH)/sequencer/tests/testlist.mk
include $(PLATFORM_PATH)/test/testlist.mk
define VALIDATE_TEST_LIST
ifneq ($1,)
ifeq ($$(findstring -,$1),-)
$$(call CATASTROPHIC_ERROR,Invalid test name,Test names can't contain '-', but '$1' does.)
else
$$(eval $$(call VALIDATE_TEST_LIST,$$(firstword $2),$$(wordlist 2,9999,$2)))
endif
endif
endef
$(eval $(call VALIDATE_TEST_LIST,$(firstword $(TEST_LIST)),$(wordlist 2,9999,$(TEST_LIST))))

View File

@ -1,99 +0,0 @@
# This file maps keys between `config.h` and `info.json`. It is used by QMK
# to correctly and consistently map back and forth between the two systems.
{
# Format:
# <config.h key>: {"info_key": <info.json key>, ["value_type": <value_type>], ["to_json": <true/false>], ["to_c": <true/false>]}
# value_type: one of "array", "array.int", "bool", "int", "hex", "list", "mapping"
# to_json: Default `true`. Set to `false` to exclude this mapping from info.json
# to_c: Default `true`. Set to `false` to exclude this mapping from config.h
# warn_duplicate: Default `true`. Set to `false` to turn off warning when a value exists in both places
"AUDIO_VOICES": {"info_key": "audio.voices", "value_type": "bool"},
"BACKLIGHT_BREATHING": {"info_key": "backlight.breathing", "value_type": "bool"},
"BREATHING_PERIOD": {"info_key": "backlight.breathing_period", "value_type": "int"},
"BACKLIGHT_PIN": {"info_key": "backlight.pin"},
"COMBO_COUNT": {"info_key": "combo.count", "value_type": "int"},
"COMBO_TERM": {"info_key": "combo.term", "value_type": "int"},
"DEBOUNCE": {"info_key": "debounce", "value_type": "int"},
"DEVICE_VER": {"info_key": "usb.device_ver", "value_type": "hex"},
# TODO: Replace ^^^ with vvv
#"DEVICE_VER": {"info_key": "usb.device_version", "value_type": "bcd_version"},
"DESCRIPTION": {"info_key": "keyboard_folder", "to_json": false},
"DIODE_DIRECTION": {"info_key": "diode_direction"},
"FORCE_NKRO": {"info_key": "usb.force_nkro", "value_type": "bool"},
"DYNAMIC_KEYMAP_EEPROM_MAX_ADDR": {"info_key": "dynamic_keymap.eeprom_max_addr", "value_type": "int"},
"DYNAMIC_KEYMAP_LAYER_COUNT": {"info_key": "dynamic_keymap.layer_count", "value_type": "int"},
"IGNORE_MOD_TAP_INTERRUPT": {"info_key": "tapping.ignore_mod_tap_interrupt", "value_type": "bool"},
"IGNORE_MOD_TAP_INTERRUPT_PER_KEY": {"info_key": "tapping.ignore_mod_tap_interrupt_per_key", "value_type": "bool"},
"LAYOUTS": {"info_key": "layout_aliases", "value_type": "mapping"},
"LEADER_PER_KEY_TIMING": {"info_key": "leader_key.timing", "value_type": "bool"},
"LEADER_KEY_STRICT_KEY_PROCESSING": {"info_key": "leader_key.strict_processing", "value_type": "bool"},
"LEADER_TIMEOUT": {"info_key": "leader_key.timeout", "value_type": "int"},
"LED_CAPS_LOCK_PIN": {"info_key": "indicators.caps_lock"},
"LED_NUM_LOCK_PIN": {"info_key": "indicators.num_lock"},
"LED_SCROLL_LOCK_PIN": {"info_key": "indicators.scroll_lock"},
"MANUFACTURER": {"info_key": "manufacturer"},
"MATRIX_HAS_GHOST": {"info_key": "matrix_pins.ghost", "value_type": "bool"},
"MATRIX_IO_DELAY": {"info_key": "matrix_pins.io_delay", "value_type": "int"},
"MOUSEKEY_DELAY": {"info_key": "mousekey.delay", "value_type": "int"},
"MOUSEKEY_INTERVAL": {"info_key": "mousekey.interval", "value_type": "int"},
"MOUSEKEY_MAX_SPEED": {"info_key": "mousekey.max_speed", "value_type": "int"},
"MOUSEKEY_TIME_TO_MAX": {"info_key": "mousekey.time_to_max", "value_type": "int"},
"MOUSEKEY_WHEEL_DELAY": {"info_key": "mousekey.wheel_delay", "value_type": "int"},
"ONESHOT_TIMEOUT": {"info_key": "oneshot.timeout", "value_type": "int"},
"ONESHOT_TAP_TOGGLE": {"info_key": "oneshot.tap_toggle", "value_type": "int"},
"PERMISSIVE_HOLD": {"info_key": "tapping.permissive_hold", "value_type": "bool"},
"PERMISSIVE_HOLD_PER_KEY": {"info_key": "tapping.permissive_hold_per_key", "value_type": "bool"},
"RETRO_TAPPING": {"info_key": "tapping.retro", "value_type": "bool"},
"RETRO_TAPPING_PER_KEY": {"info_key": "tapping.retro_per_key", "value_type": "bool"},
"RGB_DI_PIN": {"info_key": "rgblight.pin"},
"RGBLED_NUM": {"info_key": "rgblight.led_count", "value_type": "int"},
"RGBLED_SPLIT": {"info_key": "rgblight.split_count", "value_type": "array.int"},
"RGBLIGHT_ANIMATIONS": {"info_key": "rgblight.animations.all", "value_type": "bool"},
"RGBLIGHT_EFFECT_ALTERNATING": {"info_key": "rgblight.animations.alternating", "value_type": "bool"},
"RGBLIGHT_EFFECT_BREATHING": {"info_key": "rgblight.animations.breathing", "value_type": "bool"},
"RGBLIGHT_EFFECT_CHRISTMAS": {"info_key": "rgblight.animations.christmas", "value_type": "bool"},
"RGBLIGHT_EFFECT_KNIGHT": {"info_key": "rgblight.animations.knight", "value_type": "bool"},
"RGBLIGHT_EFFECT_RAINBOW_MOOD": {"info_key": "rgblight.animations.rainbow_mood", "value_type": "bool"},
"RGBLIGHT_EFFECT_RAINBOW_SWIRL": {"info_key": "rgblight.animations.rainbow_swirl", "value_type": "bool"},
"RGBLIGHT_EFFECT_RGB_TEST": {"info_key": "rgblight.animations.rgb_test", "value_type": "bool"},
"RGBLIGHT_EFFECT_SNAKE": {"info_key": "rgblight.animations.snake", "value_type": "bool"},
"RGBLIGHT_EFFECT_STATIC_GRADIENT": {"info_key": "rgblight.animations.static_gradient", "value_type": "bool"},
"RGBLIGHT_EFFECT_TWINKLE": {"info_key": "rgblight.animations.twinkle"},
"RGBLIGHT_LAYER_BLINK": {"info_key": "rgblight.layers.blink", "value_type": "bool"},
"RGBLIGHT_LAYERS": {"info_key": "rgblight.layers.enabled", "value_type": "bool"},
"RGBLIGHT_LAYERS_OVERRIDE_RGB_OFF": {"info_key": "rgblight.layers.override_rgb", "value_type": "bool"},
"RGBLIGHT_LIMIT_VAL": {"info_key": "rgblight.max_brightness", "value_type": "int"},
"RGBLIGHT_MAX_LAYERS": {"info_key": "rgblight.layers.max", "value_type": "int"},
"RGBLIGHT_HUE_STEP": {"info_key": "rgblight.hue_steps", "value_type": "int"},
"RGBLIGHT_SAT_STEP": {"info_key": "rgblight.saturation_steps", "value_type": "int"},
"RGBLIGHT_VAL_STEP": {"info_key": "rgblight.brightness_steps", "value_type": "int"},
"RGBLIGHT_SLEEP": {"info_key": "rgblight.sleep", "value_type": "bool"},
"RGBLIGHT_SPLIT": {"info_key": "rgblight.split", "value_type": "bool"},
"RGBW": {"info_key": "rgblight.rgbw", "value_type": "bool"},
"PRODUCT": {"info_key": "keyboard_name", "warn_duplicate": false},
"PRODUCT_ID": {"info_key": "usb.pid", "value_type": "hex"},
"VENDOR_ID": {"info_key": "usb.vid", "value_type": "hex"},
"QMK_ESC_OUTPUT": {"info_key": "qmk_lufa_bootloader.esc_output"},
"QMK_ESC_INPUT": {"info_key": "qmk_lufa_bootloader.esc_input"},
"QMK_KEYS_PER_SCAN": {"info_key": "qmk.keys_per_scan", "value_type": "int"},
"QMK_LED": {"info_key": "qmk_lufa_bootloader.led"},
"QMK_SPEAKER": {"info_key": "qmk_lufa_bootloader.speaker"},
"SENDSTRING_BELL": {"info_key": "audio.macro_beep", "value_type": "bool"},
"SPLIT_MODS_ENABLE": {"info_key": "split.transport.sync_modifiers", "value_type": "bool"},
"SPLIT_TRANSPORT_MIRROR": {"info_key": "split.transport.sync_matrix_state", "value_type": "bool"},
"SPLIT_USB_DETECT": {"info_key": "split.usb_detect.enabled", "value_type": "bool"},
"SPLIT_USB_TIMEOUT": {"info_key": "split.usb_detect.timeout", "value_type": "int"},
"SPLIT_USB_TIMEOUT_POLL": {"info_key": "split.usb_detect.polling_interval", "value_type": "int"},
"SOFT_SERIAL_PIN": {"info_key": "split.soft_serial_pin"},
"SOFT_SERIAL_SPEED": {"info_key": "split.soft_serial_speed"},
"TAP_CODE_DELAY": {"info_key": "qmk.tap_keycode_delay", "value_type": "int"},
"TAP_HOLD_CAPS_DELAY": {"info_key": "qmk.tap_capslock_delay", "value_type": "int"},
"TAPPING_FORCE_HOLD": {"info_key": "tapping.force_hold", "value_type": "bool"},
"TAPPING_FORCE_HOLD_PER_KEY": {"info_key": "tapping.force_hold_per_key", "value_type": "bool"},
"TAPPING_TERM": {"info_key": "tapping.term", "value_type": "int"},
"TAPPING_TERM_PER_KEY": {"info_key": "tapping.term_per_key", "value_type": "bool"},
"TAPPING_TOGGLE": {"info_key": "tapping.toggle", "value_type": "int"},
"USB_MAX_POWER_CONSUMPTION": {"info_key": "usb.max_power", "value_type": "int"},
"USB_POLLING_INTERVAL_MS": {"info_key": "usb.polling_interval", "value_type": "int"},
"USB_SUSPEND_WAKEUP_DELAY": {"info_key": "usb.suspend_wakeup_delay", "value_type": "int"},
}

View File

@ -1,25 +0,0 @@
# This file maps keys between `rules.mk` and `info.json`. It is used by QMK
# to correctly and consistently map back and forth between the two systems.
{
# Format:
# <rules.mk key>: {"info_key": <info.json key>, ["value_type": <value_type>], ["to_json": <true/false>], ["to_c": <true/false>]}
# value_type: one of "array", "array.int", "bool", "int", "list", "hex", "mapping"
# to_json: Default `true`. Set to `false` to exclude this mapping from info.json
# to_c: Default `true`. Set to `false` to exclude this mapping from rules.mk
# warn_duplicate: Default `true`. Set to `false` to turn off warning when a value exists in both places
"BOARD": {"info_key": "board"},
"BOOTLOADER": {"info_key": "bootloader", "warn_duplicate": false},
"BLUETOOTH": {"info_key": "bluetooth.driver"},
"FIRMWARE_FORMAT": {"info_key": "build.firmware_format"},
"KEYBOARD_SHARED_EP": {"info_key": "usb.shared_endpoint.keyboard", "value_type": "bool"},
"MOUSE_SHARED_EP": {"info_key": "usb.shared_endpoint.mouse", "value_type": "bool"},
"LAYOUTS": {"info_key": "community_layouts", "value_type": "list"},
"LED_MATRIX_DRIVER": {"info_key": "led_matrix.driver"},
"LTO_ENABLE": {"info_key": "build.lto", "value_type": "bool"},
"MCU": {"info_key": "processor", "warn_duplicate": false},
"MOUSEKEY_ENABLE": {"info_key": "mouse_key.enabled", "value_type": "bool"},
"NO_USB_STARTUP_CHECK": {"info_key": "usb.no_startup_check", "value_type": "bool"},
"SPLIT_KEYBOARD": {"info_key": "split.enabled", "value_type": "bool"},
"SPLIT_TRANSPORT": {"info_key": "split.transport.protocol", "value_type": "str", "to_c": false},
"WAIT_FOR_USB": {"info_key": "usb.wait_for", "value_type": "bool"}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,23 +0,0 @@
{
"$id": "qmk.api.keyboard.v1",
"allOf": [
{"$ref": "qmk.keyboard.v1"},
{
"properties": {
"keymaps": {
"type": "object",
"properties": {
"url": {"type": "string"}
}
},
"parse_errors": {"$ref": "qmk.definitions.v1#/string_array"},
"parse_warnings": {"$ref": "qmk.definitions.v1#/string_array"},
"processor_type": {"type": "string"},
"protocol": {"type": "string"},
"keyboard_folder": {"type": "string"},
"platform": {"type": "string"}
}
}
]
}

View File

@ -1,141 +0,0 @@
{
"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "qmk.definitions.v1",
"title": "Common definitions used across QMK's jsonschemas.",
"type": "object",
"boolean_array": {
"type": "object",
"additionalProperties": {"type": "boolean"}
},
"filename": {
"type": "string",
"minLength": 1,
"pattern": "^[0-9a-z_]*$"
},
"hex_number_2d": {
"type": "string",
"pattern": "^0x[0-9A-F]{2}$"
},
"hex_number_4d": {
"type": "string",
"pattern": "^0x[0-9A-F]{4}$"
},
"bcd_version": {
"type": "string",
"pattern": "^[0-9]{1,2}\\.[0-9]\\.[0-9]$"
},
"text_identifier": {
"type": "string",
"minLength": 1,
"maxLength": 250
},
"layout_macro": {
"oneOf": [
{
"type": "string",
"enum": [
"LAYOUT",
"LAYOUT_1x2uC",
"LAYOUT_1x2uL",
"LAYOUT_1x2uR",
"LAYOUT_2x2uC",
"LAYOUT_2x3uC",
"LAYOUT_625uC",
"LAYOUT_ANSI_DEFAULT",
"LAYOUT_JP",
"LAYOUT_ortho_3x12_1x2uC",
"LAYOUT_ortho_4x12_1x2uC",
"LAYOUT_ortho_4x12_1x2uL",
"LAYOUT_ortho_4x12_1x2uR",
"LAYOUT_ortho_5x12_1x2uC",
"LAYOUT_ortho_5x12_2x2uC",
"LAYOUT_ortho_5x14_1x2uC",
"LAYOUT_ortho_5x14_1x2uL",
"LAYOUT_ortho_5x14_1x2uR",
"LAYOUT_planck_1x2uC",
"LAYOUT_planck_1x2uL",
"LAYOUT_planck_1x2uR",
"LAYOUT_preonic_1x2uC",
"LAYOUT_preonic_1x2uL",
"LAYOUT_preonic_1x2uR",
"LAYOUT_reviung34_2uL"
]
},
{
"type": "string",
"pattern": "^LAYOUT_[0-9a-z_]*$"
}
]
},
"key_unit": {
"type": "number",
"min": 0.25
},
"mcu_pin_array": {
"type": "array",
"items": {"$ref": "#/mcu_pin"}
},
"mcu_pin": {
"oneOf": [
{
"type": "string",
"enum": ["NO_PIN"]
},
{
"type": "string",
"pattern": "^[A-K]\\d{1,2}$"
},
{
"type": "string",
"pattern": "^LINE_PIN\\d{1,2}$"
},
{
"type": "number",
"multipleOf": 1
},
{
"type": "null"
}
]
},
"signed_decimal": {
"type": "number"
},
"signed_int": {
"type": "number",
"multipleOf": 1
},
"signed_int_8": {
"type": "number",
"min": -127,
"max": 127,
"multipleOf": 1
},
"string_array": {
"type": "array",
"items": {
"type": "string"
}
},
"string_object": {
"type": "object",
"additionalProperties": {
"type": "string"
}
},
"unsigned_decimal": {
"type": "number",
"min": 0
},
"unsigned_int": {
"type": "number",
"min": 0,
"multipleOf": 1
},
"unsigned_int_8": {
"type": "number",
"min": 0,
"max": 255,
"multipleOf": 1
}
}

View File

@ -1 +0,0 @@
false

View File

@ -1,364 +0,0 @@
{
"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "qmk.keyboard.v1",
"title": "Keyboard Information",
"type": "object",
"properties": {
"keyboard_name": {"$ref": "qmk.definitions.v1#/text_identifier"},
"maintainer": {"$ref": "qmk.definitions.v1#/text_identifier"},
"manufacturer": {"$ref": "qmk.definitions.v1#/text_identifier"},
"url": {
"type": "string",
"format": "uri"
},
"processor": {
"type": "string",
"enum": ["cortex-m0", "cortex-m0plus", "cortex-m3", "cortex-m4", "MKL26Z64", "MK20DX128", "MK20DX256", "MK66FX1M0", "STM32F042", "STM32F072", "STM32F103", "STM32F303", "STM32F401", "STM32F405", "STM32F407", "STM32F411", "STM32F446", "STM32G431", "STM32G474", "STM32L412", "STM32L422", "STM32L432", "STM32L433", "STM32L442", "STM32L443", "GD32VF103", "WB32F3G71", "atmega16u2", "atmega32u2", "atmega16u4", "atmega32u4", "at90usb162", "at90usb646", "at90usb647", "at90usb1286", "at90usb1287", "atmega32a", "atmega328p", "atmega328", "attiny85", "unknown"]
},
"audio": {
"type": "object",
"additionalProperties": false,
"properties": {
"macro_beep": {"type": "boolean"},
"pins": {"$ref": "qmk.definitions.v1#/mcu_pin_array"},
"voices": {"type": "boolean"}
}
},
"backlight": {
"type": "object",
"additionalProperties": false,
"properties": {
"breathing": {"type": "boolean"},
"breathing_period": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
"levels": {
"type": "number",
"min": 1,
"max": 31,
"multipleOf": 1
},
"pin": {"$ref": "qmk.definitions.v1#/mcu_pin"}
}
},
"bluetooth": {
"type": "object",
"additionalProperties": false,
"properties": {
"driver": {
"type": "string",
"enum": ["BluefruitLE", "RN42"]
},
"lto": {"type": "boolean"},
}
},
"board": {
"type": "string",
"minLength": 2,
"pattern": "^[a-zA-Z_][0-9a-zA-Z_]*$"
},
"bootloader": {
"type": "string",
"enum": ["atmel-dfu", "bootloadhid", "bootloadHID", "custom", "caterina", "halfkay", "kiibohd", "lufa-dfu", "lufa-ms", "md-boot", "qmk-dfu", "qmk-hid", "stm32-dfu", "stm32duino", "gd32v-dfu", "wb32-dfu", "unknown", "usbasploader", "USBasp", "tinyuf2"],
},
"bootloader_instructions": {
"type": "string",
"description": "Instructions for putting the keyboard into a mode that allows for firmware flashing."
},
"build": {
"type": "object",
"additionalProperties": false,
"properties": {
"debounce_type": {
"type": "string",
"enum": ["custom", "eager_pk", "eager_pr", "sym_defer_pk", "sym_defer_pr", "sym_eager_pk"]
},
"firmware_format": {
"type": "string",
"enum": ["bin", "hex", "uf2"]
},
"lto": {"type": "boolean"},
}
},
"diode_direction": {
"type": "string",
"enum": ["COL2ROW", "ROW2COL"]
},
"debounce": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"combo": {
"type": "object",
"properties": {
"count": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"term": {"$ref": "qmk.definitions.v1#/unsigned_int"}
}
},
"community_layouts": {
"type": "array",
"items": {"$ref": "qmk.definitions.v1#/filename"}
},
"features": {"$ref": "qmk.definitions.v1#/boolean_array"},
"indicators": {
"type": "object",
"properties": {
"caps_lock": {"$ref": "qmk.definitions.v1#/mcu_pin"},
"num_lock": {"$ref": "qmk.definitions.v1#/mcu_pin"},
"scroll_lock": {"$ref": "qmk.definitions.v1#/mcu_pin"}
}
},
"layout_aliases": {
"type": "object",
"additionalProperties": {"$ref": "qmk.definitions.v1#/layout_macro"}
},
"layouts": {
"type": "object",
"propertyNames": {"$ref": "qmk.definitions.v1#/layout_macro"},
"additionalProperties": {
"type": "object",
"additionalProperties": false,
"properties": {
"filename": {
"type": "string"
},
"c_macro": {
"type": "boolean"
},
"layout": {
"type": "array",
"items": {
"type": "object",
"additionalProperties": false,
"properties": {
"label": {"type": "string"},
"matrix": {
"type": "array",
"minItems": 2,
"maxItems": 2,
"items": {
"type": "number",
"min": 0,
"multipleOf": 1
}
},
"r": {"$ref": "qmk.definitions.v1#/unsigned_decimal"},
"rx": {"$ref": "qmk.definitions.v1#/unsigned_decimal"},
"ry": {"$ref": "qmk.definitions.v1#/unsigned_decimal"},
"h": {"$ref": "qmk.definitions.v1#/key_unit"},
"w": {"$ref": "qmk.definitions.v1#/key_unit"},
"x": {"$ref": "qmk.definitions.v1#/key_unit"},
"y": {"$ref": "qmk.definitions.v1#/key_unit"}
}
}
}
}
}
},
"leader_key": {
"type": "object",
"properties": {
"timing": {"type": "boolean"},
"strict_processing": {"type": "boolean"},
"timeout": {"$ref": "qmk.definitions.v1#/unsigned_int"}
}
},
"matrix_pins": {
"type": "object",
"additionalProperties": false,
"properties": {
"custom": {"type": "boolean"},
"custom_lite": {"type": "boolean"},
"ghost": {"type": "boolean"},
"io_delay": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"direct": {
"type": "array",
"items": {"$ref": "qmk.definitions.v1#/mcu_pin_array"}
},
"cols": {"$ref": "qmk.definitions.v1#/mcu_pin_array"},
"rows": {"$ref": "qmk.definitions.v1#/mcu_pin_array"},
"unused": {"$ref": "qmk.definitions.v1#/mcu_pin_array"}
}
},
"mouse_key": {
"type": "object",
"properties": {
"enabled": {"type": "boolean"},
"delay": {"$ref": "qmk.definitions.v1#/unsigned_int_8"}
"interval": {"$ref": "qmk.definitions.v1#/unsigned_int_8"}
"max_speed": {"$ref": "qmk.definitions.v1#/unsigned_int_8"}
"time_to_max": {"$ref": "qmk.definitions.v1#/unsigned_int_8"}
"wheel_delay": {"$ref": "qmk.definitions.v1#/unsigned_int_8"}
}
},
"oneshot": {
"type": "object",
"properties": {
"tap_toggle": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"timeout": {"$ref": "qmk.definitions.v1#/unsigned_int"}
}
},
"rgblight": {
"type": "object",
"additionalProperties": false,
"properties": {
"animations": {
"type": "object",
"additionalProperties": {
"type": "boolean"
}
},
"brightness_steps": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"hue_steps": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"layers": {
"type": "object",
"additionalProperties": false,
"properties": {
"blink": {"type": "boolean"},
"enabled": {"type": "boolean"},
"max": {
"type": "number",
"min": 1,
"max": 32,
"multipleOf": 1
},
"override_rgb": {"type": "boolean"}
}
},
"led_count": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"max_brightness": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
"pin": {"$ref": "qmk.definitions.v1#/mcu_pin"},
"rgbw": {"type": "boolean"},
"saturation_steps": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"sleep": {"type": "boolean"},
"split": {"type": "boolean"},
"split_count": {
"type": "array",
"minLength": 2,
"maxLength": 2,
"items": {"$ref": "qmk.definitions.v1#/unsigned_int"}
}
}
},
"split": {
"type": "object",
"additionalProperties": false,
"properties": {
"enabled": {"type": "boolean"},
"matrix_grid": {
"type": "array",
"items": {"$ref": "qmk.definitions.v1#/mcu_pin"}
},
"matrix_pins": {
"type": "object",
"additionalProperties": false,
"properties": {
"right": {
"type": "object",
"additionalProperties": false,
"properties": {
"direct": {
"type": "array",
"items": {"$ref": "qmk.definitions.v1#/mcu_pin_array"}
},
"cols": {"$ref": "qmk.definitions.v1#/mcu_pin_array"},
"rows": {"$ref": "qmk.definitions.v1#/mcu_pin_array"},
"unused": {"$ref": "qmk.definitions.v1#/mcu_pin_array"}
}
}
}
},
"main": {
"type": "string",
"enum": ["eeprom", "left", "matrix_grid", "pin", "right"]
},
"soft_serial_pin": {"$ref": "qmk.definitions.v1#/mcu_pin"},
"soft_serial_speed": {
"type": "number",
"min": 0,
"max": 5,
"multipleOf": 1
},
"transport": {
"type": "object",
"additionalProperties": false,
"properties": {
"protocol": {
"type": "string",
"enum": ["custom", "i2c", "serial", "serial_usart"]
},
"sync_matrix_state": {"type": "boolean"},
"sync_modifiers": {"type": "boolean"}
}
},
"usb_detect": {
"type": "object",
"additionalProperties": false,
"properties": {
"enabled": {"type": "boolean"},
"polling_interval": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"timeout": {"$ref": "qmk.definitions.v1#/unsigned_int"}
}
}
}
},
"tags": {
"type": "array",
"items": {"type": "string"}
},
"tapping": {
"type": "object",
"properties": {
"force_hold": {"type": "boolean"},
"force_hold_per_key": {"type": "boolean"},
"ignore_mod_tap_interrupt": {"type": "boolean"},
"ignore_mod_tap_interrupt_per_key": {"type": "boolean"},
"permissive_hold": {"type": "boolean"},
"permissive_hold_per_key": {"type": "boolean"},
"retro": {"type": "boolean"},
"retro_per_key": {"type": "boolean"},
"term": {"$ref": "qmk.definitions.v1#/unsigned_int"},
"term_per_key": {"type": "boolean"},
"toggle": {"$ref": "qmk.definitions.v1#/unsigned_int"},
}
},
"usb": {
"type": "object",
"additionalProperties": false,
"properties": {
"device_ver": {"$ref": "qmk.definitions.v1#/hex_number_4d"}, # Deprecated
"device_version": {"$ref": "qmk.definitions.v1#/bcd_version"},
"force_nkro": {"type": "boolean"},
"pid": {"$ref": "qmk.definitions.v1#/hex_number_4d"},
"vid": {"$ref": "qmk.definitions.v1#/hex_number_4d"},
"max_power": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
"no_startup_check": {"type": "boolean"},
"polling_interval": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
"shared_endpoint": {
"type": "object",
"additionalProperties": false,
"properties": {
"keyboard": {"type": "boolean"},
"mouse": {"type": "boolean"}
}
},
"suspend_wakeup_delay": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
"wait_for": {"type": "boolean"},
}
},
"qmk": {
"type": "object",
"additionalProperties": false,
"properties": {
"keys_per_scan": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
"tap_keycode_delay": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
"tap_capslock_delay": {"$ref": "qmk.definitions.v1#/unsigned_int_8"},
}
},
"qmk_lufa_bootloader": {
"type": "object",
"additionalProperties": false,
"properties": {
"esc_output": {"$ref": "qmk.definitions.v1#/mcu_pin"},
"esc_input": {"$ref": "qmk.definitions.v1#/mcu_pin"},
"led": {"$ref": "qmk.definitions.v1#/mcu_pin"},
"speaker": {"$ref": "qmk.definitions.v1#/mcu_pin"}
}
}
}
}

View File

@ -1,62 +0,0 @@
{
"$schema": "http://json-schema.org/draft-07/schema#",
"$id": "qmk.keymap.v1",
"title": "Keymap Information",
"type": "object",
"properties": {
"author": {"type": "string"},
"host_language": {"$ref": "qmk.definitions.v1#/text_identifier"},
"keyboard": {"$ref": "qmk.definitions.v1#/text_identifier"},
"keymap": {"$ref": "qmk.definitions.v1#/text_identifier"},
"layout": {"$ref": "qmk.definitions.v1#/layout_macro"},
"layers": {
"type": "array",
"items": {
"type": "array",
"items": {"type": "string"}
}
},
"macros": {
"type": "array",
"items": {
"type": "array",
"items": {
"oneOf": [
{
"type": "string"
},
{
"type": "object",
"additionalProperties": false,
"properties": {
"action": {
"type": "string",
"enum": ['beep', 'delay', 'down', 'tap', 'up']
},
"keycodes": {
"type": "array",
"items": {
"$ref": "qmk.definitions.v1#/text_identifier"
}
},
"duration": {
"$ref": "qmk.definitions.v1#/unsigned_int"
}
}
}
]
}
}
},
"config": {"$ref": "qmk.keyboard.v1"},
"notes": {
"type": "string",
"description": "asdf"
}
},
"required": [
"keyboard",
"layout",
"layers"
]
}

View File

@ -1 +0,0 @@
true

View File

@ -1,20 +0,0 @@
// Copyright %YEAR% %REAL_NAME% (@%USER_NAME%)
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
//#define NO_DEBUG
/* disable print */
//#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT

View File

@ -1,25 +0,0 @@
{
"keyboard_name": "%KEYBOARD%",
"maintainer": "%USER_NAME%",
"manufacturer": "%REAL_NAME%",
"processor": "%MCU%",
"bootloader": "%BOOTLOADER%",
"diode_direction": "COL2ROW",
"matrix_pins": {
"cols": ["C2"],
"rows": ["D1"]
},
"usb": {
"vid": "0xFEED",
"pid": "0x0000",
"device_version": "1.0.0"
},
"features": {
"bootmagic": true,
"command": false,
"console": false,
"extrakey": true,
"mousekey": true,
"nkro": true
}
}

View File

@ -1,27 +0,0 @@
# %KEYBOARD%
![%KEYBOARD%](imgur.com image replace me!)
*A short description of the keyboard/project*
* Keyboard Maintainer: [%REAL_NAME%](https://github.com/%USER_NAME%)
* Hardware Supported: *The PCBs, controllers supported*
* Hardware Availability: *Links to where you can find this hardware*
Make example for this keyboard (after setting up your build environment):
make %KEYBOARD%:default
Flashing example for this keyboard:
make %KEYBOARD%:default:flash
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).
## Bootloader
Enter the bootloader in 3 ways:
* **Bootmagic reset**: Hold down the key at (0,0) in the matrix (usually the top left key or Escape) and plug in the keyboard
* **Physical reset button**: Briefly press the button on the back of the PCB - some may have pads you must short instead
* **Keycode in layout**: Press the key mapped to `RESET` if it is available

View File

@ -1 +0,0 @@
# This file intentionally left blank

View File

View File

@ -1 +0,0 @@
docs.qmk.fm

View File

@ -1,52 +0,0 @@
# QMK Breaking Change - 2019 Aug 30
Four times a year QMK runs a process for merging Breaking Changes. A Breaking Change is any change which modifies how QMK behaves in a way that is incompatible or potentially dangerous. We limit these changes to 4 times per year so that users can have confidence that updating their QMK tree will not break their keymaps.
This document marks the inaugural Breaking Change merge. A list of changes follows.
## Core code formatting with clang-format
* All core files (`drivers/`, `quantum/`, `tests/`, and `tmk_core/`) have been formatted with clang-format
* A travis process to reformat PR's on merge has been instituted
* You can use the new CLI command `qmk cformat` to format before submitting your PR if you wish.
## LUFA USB descriptor cleanup
* Some code cleanups related to the USB HID descriptors on AVR keyboards, to make them easier to read and understand
* More information: see https://github.com/qmk/qmk_firmware/pull/4871
* No behaviour changes anticipated and no keymaps modified
## Migrating `ACTION_LAYER_MOMENTARY()` entries in `fn_actions` to `MO()` keycodes
* `fn_actions` is deprecated, and its functionality has been superseded by direct keycodes and `process_record_user()`
* The end result of removing this obsolete feature should result in a decent reduction in firmware size and code complexity
* All keymaps affected are recommended to switch away from `fn_actions` in favour of the [custom keycode](https://docs.qmk.fm/#/custom_quantum_functions) and [macro](https://docs.qmk.fm/#/feature_macros) features
## Update Atreus to current code conventions
* Duplicate include guards have bypassed the expected header processing behavior
* All keymaps affected are recommended to remove duplication of `<keyboard>/config.h` to `<keyboard>/keymaps/<user>/config.h` and only provide overrides at the keymap level
## Backport changes to keymap language files from ZSA fork
* Fixes an issue in the `keymap_br_abnt2.h` file that includes the wrong source (`keymap_common.h` instead of `keymap.h`)
* Updates the `keymap_swedish.h` file to be specific to swedish, and not just "nordic" in general.
* Any keymaps using this will need to remove `NO_*` and replace it with `SE_*`.
## Update repo to use LUFA as a git submodule
* `/lib/LUFA` removed from the repo
* LUFA set as a submodule, pointing to qmk/lufa
* This should allow more flexibility with LUFA, and allow us to keep the sub-module up to date, a lot more easily. It was ~2 years out of date with no easy path to fix that. This prevents that from being an issue in the future
## Migrating `ACTION_BACKLIGHT_*()` entries in `fn_actions` to `BL_` keycodes
* `fn_actions` is deprecated, and its functionality has been superseded by direct keycodes and `process_record_user()`
* All keymaps using these actions have had the relevant `KC_FN*` keys replaced with the equivalent `BL_*` keys
* If you currently use `KC_FN*` you will need to replace `fn_actions` with the [custom keycode](https://docs.qmk.fm/#/custom_quantum_functions) and [macro](https://docs.qmk.fm/#/feature_macros) features
## Remove `KC_DELT` alias in favor of `KC_DEL`
* `KC_DELT` was a redundant, undocumented alias for `KC_DELETE`
* It has been removed and all its uses replaced with the more common `KC_DEL` alias
* Around 90 keymaps (mostly for ErgoDox boards) have been modified as a result

View File

@ -1,75 +0,0 @@
# QMK Breaking Change - 2020 Feb 29 Changelog
Four times a year QMK runs a process for merging Breaking Changes. A Breaking Change is any change which modifies how QMK behaves in a way that is incompatible or potentially dangerous. We limit these changes to 4 times per year so that users can have confidence that updating their QMK tree will not break their keymaps.
## Update ChibiOS/ChibiOS-Contrib/uGFX submodules
* General Notes
* A `make git-submodule` may be required after pulling the latest QMK firmware code to update affected submodules to the upgraded revisions
* Enabling link-time-optimization (`LINK_TIME_OPTIMIZATION_ENABLE = yes`) should work on a lot more boards
* Upgrade to ChibiOS ver19.1.3
* This will allow QMK to update to upstream ChibiOS a lot easier -- the old version was ~2 years out of date. Automated update scripts have been made available to simplify future upgrades.
* Includes improved MCU support and bugfixes
* ChibiOS revision is now included in Command output
* Timers should now be more accurate
* Upgrade to newer ChibiOS-Contrib
* Also includes improved MCU support and bugfixes
* ChibiOS-Contrib revision is now included in Command output
* Upgrade to newer uGFX
* Required in order to support updated ChibiOS
## Fix ChibiOS timer overflow for 16-bit SysTick devices
* On 16-bit SysTick devices, the timer subsystem in QMK was incorrectly dealing with overflow.
* When running at a 100000 SysTick frequency (possible on 16-bit devices, but uncommon), this overflow would occur after 0.65 seconds.
* Timers are now correctly handling this overflow case and timing should now be correct on ChibiOS/ARM.
## Update LUFA submodule
* Updates the LUFA submodule to include updates from upstream (abcminiuser/lufa)
* Includes some cleanup for QMK DFU generation
## Encoder flip
* Flips the encoder direction so that `clockwise == true` is for actually turning the knob clockwise
* Adds `ENCODER_DIRECTION_FLIP` define, so that reversing the expected dirction is simple for users.
* Cleans up documentation page for encoders
## Adding support for `BACKLIGHT_ON_STATE` for hardware PWM backlight
* Previously, the define only affected software PWM, and hardware PWM always assumed an N-channel MOSFET.
* The hardware PWM backlight setup has been updated to respect this option.
* The default "on" state has been changed to `1` - **this impacts all keyboards using software PWM backlight that do not define it explicitly**. If your keyboard's backlight is acting strange, it may have a P-channel MOSFET, and will need to have `#define BACKLIGHT_ON_STATE 0` added to the keyboard-level `config.h`. Please see the PR for more detailed information.
## Migrating `ACTION_LAYER_TAP_KEY()` entries in `fn_actions` to `LT()` keycodes
* `fn_actions` is deprecated, and its functionality has been superseded by direct keycodes and `process_record_user()`
* The end result of removing this obsolete feature should result in a decent reduction in firmware size and code complexity
* All keymaps affected are recommended to switch away from `fn_actions` in favour of the [custom keycode](https://docs.qmk.fm/#/custom_quantum_functions) and [macro](https://docs.qmk.fm/#/feature_macros) features
## Moving backlight keycode handling to `process_keycode/`
* This refactors the backlight keycode logic to be clearer and more modular.
* All backlight-related keycodes are now actioned in a single file.
* The `ACTION_BACKLIGHT_*` macros have also been deleted. If you are still using these in a `fn_actions[]` block, please switch to using the backlight keycodes or functions directly.
## Refactor Planck keymaps to use Layout Macros
* Refactor Planck keymaps to use layout macros instead of raw matrix assignments
* Makes keymaps revision-agnostic
* Should reduce noise and errors in Travis CI logs
## GON NerD codebase refactor
* Splits the codebase for GON NerD 60 and NerdD TKL PCBs into two separate directories.
* If your keymap is for a NerD 60 PCB, your `make` command is now `make gon/nerd60:<keymap>`.
* If your keymap is for a NerD TKL PCB, your `make` command is now `make gon/nerdtkl:<keymap>`.

View File

@ -1,239 +0,0 @@
# QMK Breaking Change - 2020 May 30 Changelog
Four times a year QMK runs a process for merging Breaking Changes. A Breaking Change is any change which modifies how QMK behaves in a way that is incompatible or potentially dangerous. We limit these changes to 4 times per year so that users can have confidence that updating their QMK tree will not break their keymaps.
The list of changes follows.
## Core Changes
### Converting V-USB usbdrv to a submodule
[#8321](https://github.com/qmk/qmk_firmware/pull/8321) and [qmk_compiler#62](https://github.com/qmk/qmk_compiler/pull/62).
These PRs move the V-USB driver code out of the qmk_firmware repository and into a submodule pointed at https://github.com/obdev/v-usb. This will make it easier to update the codebase if needed, while applying any potential QMK-specific modifications by forking it to the QMK GitHub organization.
### Unify Tap Hold functions and documentation
[#8348](https://github.com/qmk/qmk_firmware/pull/8348)
Updates all of the per key tap-hold functions to pass the `keyrecord_t` structure, and include documentation changes.
Any remaining versions or code outside of the main repo will need to be converted:
| Old function | New Function |
|------------------------------------------------------|---------------------------------------------------------------------------|
|`uint16_t get_tapping_term(uint16_t keycode)` |`uint16_t get_tapping_term(uint16_t keycode, keyrecord_t *record)` |
|`bool get_ignore_mod_tap_interrupt(uint16_t keycode)` |`bool get_ignore_mod_tap_interrupt(uint16_t keycode, keyrecord_t *record)` |
### Python Required In The Build Process
[#9000](https://github.com/qmk/qmk_firmware/pull/9000)
This is the last release of QMK that will work without having Python 3.6 (or later) installed. If your environment is not fully setup you will get a warning instructing you to set it up.
After the next breaking change you will not be able to build if `bin/qmk hello` does not work.
### Upgrade from tinyprintf to mpaland/printf
[#8269](https://github.com/qmk/qmk_firmware/pull/8269)
- Provides debug functionality on ChibiOS/ARM that is more compliant than previous integrations.
- Less maintenence, fewer QMK customisations, and allows QMK to sidestep previous compile and runtime issues.
- A `make git-submodule` may be required after pulling the latest QMK Firmware code to update to the new dependency.
### Fixed RGB_DISABLE_AFTER_TIMEOUT to be seconds based & small internals cleanup
[#6480](https://github.com/qmk/qmk_firmware/pull/6480)
- Changes `RGB_DISABLE_AFTER_TIMEOUT` to be based on milliseconds instead of ticks.
- Includes a code cleanup, resulting in a savings of 100 bytes, depending on features used.
- Fixed issues with timeouts / suspending at the wrong time not turning off all LEDs in some cases.
The `RGB_DISABLE_AFTER_TIMEOUT` definition is now deprecated, and has been superseded by `RGB_DISABLE_TIMEOUT`. To use the new definition, rename `RGB_DISABLE_AFTER_TIMEOUT` to `RGB_DISABLE_TIMEOUT` in your `config.h` file, and multiply the value set by 1200.
Before: `#define RGB_DISABLE_AFTER_TIMEOUT 100`
After: `#define RGB_DISABLE_TIMEOUT 120000`
### Switch to qmk forks for everything
[#9019](https://github.com/qmk/qmk_firmware/pull/9019)
Fork all QMK submodules to protect against upstream repositories disappearing.
### code cleanup regarding deprecated macro PLAY_NOTE_ARRAY by replacing it with PLAY_SONG
[#8484](https://github.com/qmk/qmk_firmware/pull/8484)
Removes the deprecated `PLAY_NOTE_ARRAY` macro. References to it are replaced with `PLAY_SONG`, which references the same function.
### fixing wrong configuration of AUDIO feature
[#8903](https://github.com/qmk/qmk_firmware/pull/8903) and [#8974](https://github.com/qmk/qmk_firmware/pull/8974)
`audio_avr.c` does not default to any pin; there has to be a #define XX_AUDIO in config.h at some level for Audio to actually work. Otherwise, the Audio code ends up cluttering the firmware, possibly breaking builds because the maximum allowed firmware size is exceeded.
These changes fix this by disabling Audio on keyboards that have the feature misconfigured, and therefore non-functional.
Also, add a compile-time error to alert the user to a missing pin-configuration (on AVR boards) when `AUDIO_ENABLE = yes` is set.
## Keyboard Refactors
### Migrating Lily58 to use split_common
[#6260](https://github.com/qmk/qmk_firmware/pull/6260)
Modifies the default firmware for Lily58 to use the `split_common` library, instead of including and depending on its own set of libraries for the following functionality:
- SSD1306 display
- i2c for OLED
- Serial Communication
This allows current lily58 firmware to advance with updates to the `split_common` library, which is shared with many other split keyboards.
#### To migrate existing Lily58 firmware:
[Changes to `config.h`](https://github.com/qmk/qmk_firmware/pull/6260/files#diff-445ac369c8717dcd6fc6fc3630836fc1):
- Remove `#define SSD1306OLED` from config.h
[Changes to `keymap.c`](https://github.com/qmk/qmk_firmware/pull/6260/files#diff-20943ea59856e9bdf3d99ecb2eee40b7):
- Find/Replace each instance of `#ifdef SSD1306OLED` with `#ifdef OLED_DRIVER_ENABLE`
- The following changes are for compatibility with the OLED driver. If you don't use the OLED driver you may safely delete [this section](https://github.com/qmk/qmk_firmware/blob/e6b9980bd45c186f7360df68c24b6e05a80c10dc/keyboards/lily58/keymaps/default/keymap.c#L144-L190)
- Alternatively, if you did not change the OLED code from that in `default`, you may find it easier to simply copy the [relevant section](https://github.com/qmk/qmk_firmware/blob/4ac310668501ae6786c711ecc8f01f62ddaa1c0b/keyboards/lily58/keymaps/default/keymap.c#L138-L172). Otherwise, the changes you need to make are as follows (sample change [here](https://github.com/qmk/qmk_firmware/pull/6260/files#diff-20943ea59856e9bdf3d99ecb2eee40b7R138-R173))
- [Remove](https://github.com/qmk/qmk_firmware/pull/6260/files#diff-20943ea59856e9bdf3d99ecb2eee40b7L138-L141) the block
```c
#ifdef SSD1306OLED
iota_gfx_init(!has_usb()); // turns on the display
#endif
```
- Within the block bounded by `#ifdef OLED_DRIVER_ENABLE` and `#endif // OLED_DRIVER_ENABLE`, add the following block to ensure that your two OLEDs are rotated correctly across the left and right sides:
```c
oled_rotation_t oled_init_user(oled_rotation_t rotation) {
if (!is_keyboard_master())
return OLED_ROTATION_180; // flips the display 180 degrees if offhand
return rotation;
}
```
- Remove the functions `matrix_scan_user`, `matrix_update` and `iota_gfx_task_user`
- Find/Replace `matrix_render_user(struct CharacterMatrix *matrix)` with `iota_gfx_task_user(void)`
- Find/Replace `is_master` with `is_keyboard_master()`
- For each instance of `matrix_write_ln(matrix, display_fn())`, rewrite it as `oled_write_ln(read_layer_state(), false);`
- For each instance of `matrix_write(matrix, read_logo());`, replace with `oled_write(read_logo(), false);`
### Refactor zinc to use split_common
[#7114](https://github.com/qmk/qmk_firmware/pull/7114) and [#9171](https://github.com/qmk/qmk_firmware/pull/9171)
* Refactor to use split_common and remove split codes under the zinc/revx/
* Add - backlight RGB LED and/or underglow RGB LED option
* Add - continuous RGB animations feature (between L and R halves)
* Fix - keymap files to adapt to changes
* all authors of keymaps confirmed this PR
* Update - documents and rules.mk
### Refactor of TKC1800 to use common OLED code
[#8472](https://github.com/qmk/qmk_firmware/pull/8472)
Modifies the default firmware for TKC1800 to use the in-built I2C and OLED drivers, instead of including and depending on its own set of libraries for the following functionality:
- SSD1306 display
- i2c for OLED
This allows current TKC1800 firmware to advance with updates to those drivers, which are shared with other keyboards.
#### To migrate existing TKC1800 firmware:
[Changes to `config.h`](https://github.com/qmk/qmk_firmware/pull/8472/files#diff-d10b26e676b4a55cbb00d71955116526):
- Remove `#define SSD1306OLED` from config.h
[Changes to `tkc1800.c`](https://github.com/qmk/qmk_firmware/pull/8472/files#diff-3b35bd30abe89c8110717c6972cd2cc5):
- Add the following to avoid debug errors on HID_listen if the screen is not present
```c
void keyboard_pre_init_kb(void) {
setPinInputHigh(D0);
setPinInputHigh(D1);
keyboard_pre_init_user();
}
```
[Changes to `keymap.c`](https://github.com/qmk/qmk_firmware/pull/8472/files#diff-05a2a344ce27e4d045fe68520ccd4771):
- Find/Replace each instance of `#ifdef SSD1306OLED` with `#ifdef OLED_DRIVER_ENABLE`
- The following changes are for compatibility with the OLED driver. If you don't use the OLED driver you may safely delete [this section](https://github.com/qmk/qmk_firmware/blob/e6b9980bd45c186f7360df68c24b6e05a80c10dc/keyboards/lily58/keymaps/default/keymap.c#L144-L190)
- [Remove](https://github.com/qmk/qmk_firmware/pull/6260/files#diff-20943ea59856e9bdf3d99ecb2eee40b7L91-L158) the block
```c
#ifdef SSD1306OLED
iota_gfx_init(!has_usb()); // turns on the display
#endif
```
- Within the block bounded by `#ifdef OLED_DRIVER_ENABLE` and `#endif // OLED_DRIVER_ENABLE`, add the following block to ensure that your two OLEDs are rotated correctly across the left and right sides:
```c
oled_rotation_t oled_init_user(oled_rotation_t rotation) {
if (!is_keyboard_master())
return OLED_ROTATION_180; // flips the display 180 degrees if offhand
return rotation;
}
```
- Remove the function `iota_gfx_task_user`
### Split HHKB to ANSI and JP layouts and Add VIA support for each
[#8582](https://github.com/qmk/qmk_firmware/pull/8582)
- Splits the HHKB codebase into two separate folders `keyboards/hhkb/ansi` and `keyboards/hhkb/jp`.
- Adds VIA Configurator support for both versions.
#### Migrating existing HHKB keymaps
- Remove any checks for the `HHKB_JP` definition
- All checks for this definition have been removed, and each version uses the source that is appropriate to that version.
- Move the directory for your keymap into the appropriate `keymaps` directory
- `keyboards/hhkb/ansi/keymaps/` for ANSI HHKBs
- `keyboards/hhkb/jp/keymaps/` for HHKB JPs
- Compile with the new keyboard names
- This PR changes the compilation instructions for the HHKB Alternate Controller. To compile firmware for this controller moving forward, use:
- `make hhkb/ansi` for ANSI-layout HHKBs
- `make hhkb/jp` for HHKB JP keyboards
## Keyboard Moves
- [#8412](https://github.com/qmk/qmk_firmware/pull/8412 "Changing board names to prevent confusion") by blindassassin111
- [#8499](https://github.com/qmk/qmk_firmware/pull/8499 "Move the Keyboardio Model01 to a keyboardio/ subdir") by algernon
- [#8830](https://github.com/qmk/qmk_firmware/pull/8830 "Move spaceman keyboards") by Spaceman (formerly known as Rionlion100)
- [#8537](https://github.com/qmk/qmk_firmware/pull/8537 "Organizing my keyboards (plaid, tartan, ergoinu)") by hsgw
Keyboards by Keyboardio, Spaceman, and hsgw move to vendor folders, while PCBs designed by blindassassin111 are renamed.
Old Name | New Name
:----------------- | :-----------------
2_milk | spaceman/2_milk
at101_blackheart | at101_bh
ergoinu | dm9records/ergoinu
model01 | keyboardio/model01
omnikey_blackheart | omnikey_bh
pancake | spaceman/pancake
plaid | dm9records/plaid
tartan | dm9records/tartan
z150_blackheart | z150_bh
If you own one of these PCBs, please use the new names to compile your firmware moving forward.
## Keycode Migration PRs
[#8954](https://github.com/qmk/qmk_firmware/pull/8954 "Migrate `ACTION_LAYER_TOGGLE` to `TG()`"), [#8957](https://github.com/qmk/qmk_firmware/pull/8957 "Migrate `ACTION_MODS_ONESHOT` to `OSM()`"), [#8958](https://github.com/qmk/qmk_firmware/pull/8958 "Migrate `ACTION_DEFAULT_LAYER_SET` to `DF()`"), [#8959](https://github.com/qmk/qmk_firmware/pull/8959 "Migrate `ACTION_LAYER_MODS` to `LM()`"), [#8968](https://github.com/qmk/qmk_firmware/pull/8968 "Migrate `ACTION_MODS_TAP_KEY` to `MT()`"), [#8977](https://github.com/qmk/qmk_firmware/pull/8977 "Migrate miscellaneous `fn_actions` entries"), and [#8979](https://github.com/qmk/qmk_firmware/pull/8979 "Migrate `ACTION_MODS_KEY` to chained mod keycodes")
Authored by fauxpark, these pull requests remove references to deprecated TMK macros that have been superseded by native QMK keycodes.
Old `fn_actions` action | New QMK keycode
:---------------------- | :--------------
`ACTION_DEFAULT_LAYER_SET(layer)` | `DF(layer)`
`ACTION_LAYER_MODS(layer, mod)` | `LM(layer, mod)`
`ACTION_LAYER_ONESHOT(mod)` | `OSL(mod)`
`ACTION_LAYER_TOGGLE(layer)` | `TG(layer)`
`ACTION_MODS_ONESHOT(mod)` | `OSM(mod)`
`ACTION_MODS_TAP_KEY(mod, kc)` | `MT(mod, kc)`
`ACTION_MODS_KEY(mod, kc)`<br>e.g. `ACTION_MODS_KEY(MOD_LCTL, KC_0)` | `MOD(kc)`<br>e.g. `LCTL(KC_0)`

View File

@ -1,148 +0,0 @@
# QMK Breaking Change - 2020 Aug 29 Changelog
Four times a year QMK runs a process for merging Breaking Changes. A Breaking Change is any change which modifies how QMK behaves in a way that is incompatible or potentially dangerous. We limit these changes to 4 times per year so that users can have confidence that updating their QMK tree will not break their keymaps.
## Changes Requiring User Action :id=changes-requiring-user-action
### Relocated Keyboards :id=relocated-keyboards
#### The Key Company project consolidation ([#9547](https://github.com/qmk/qmk_firmware/pull/9547))
#### relocating boards by flehrad to flehrad/ folder ([#9635](https://github.com/qmk/qmk_firmware/pull/9635))
Keyboards released by The Key Company and keyboards designed by flehrad have moved to vendor folders. If you own any of the keyboards listed below, please use the new names to compile your firmware moving forward.
Old Name | New Name
:--------------------- | :------------------
candybar/lefty | tkc/candybar/lefty
candybar/righty | tkc/candybar/righty
m0lly | tkc/m0lly
tkc1800 | tkc/tkc1800
bigswitch | flehrad/bigswitch
handwired/downbubble | flehrad/downbubble
handwired/numbrero | flehrad/numbrero
snagpad | flehrad/snagpad
handwired/tradestation | flehrad/tradestation
### Updated Keyboard Codebases :id=keyboard-updates
#### Keebio RGB wiring update ([#7754](https://github.com/qmk/qmk_firmware/pull/7754))
This pull request changes the configuration for Keebio split boards to use the same RGB strip wiring for each half, which provides the following improvements:
* Easier wiring due to one fewer wire needed (the wire between left DOut to extra data pin) and the fact that wiring is the same for both halves.
* RGB LEDs can be controlled by each half now instead of just master half.
* Extra data line is freed up to allow for I2C usage instead of serial.
If you have customized the value of `RGBLED_SPLIT` for your keymap, you will need to undefine it using `#undef RGBLED_SPLIT` before defining it to your customized value.
This change affects:
* BFO-9000
* Fourier
* Iris rev2
* Levinson, revs. 1 and 2
* Nyquist, revs. 1 and 2
* Quefrency rev1
* Viterbi, revs. 1 and 2
### Changes to Core Functionality :id=core-updates
* Bigger Combo index ([#9318](https://github.com/qmk/qmk_firmware/pull/9318))
Allows the Combo feature to support more than 256 combos.
Any fork that uses `process_combo_event` needs to update the function's first argument to `uint16_t`:
* Old function: `void process_combo_event(uint8_t combo_index, bool pressed)`
* New function: `void process_combo_event(uint16_t combo_index, bool pressed)`
## Core Changes :id=core-changes
### Fixes :id=core-fixes
* Mousekeys: scrolling acceleration is no longer coupled to mouse movement acceleration ([#9174](https://github.com/qmk/qmk_firmware/pull/9174))
* Keymap Extras: correctly assign Question Mark in Czech layout ([#9987](https://github.com/qmk/qmk_firmware/pull/9987))
### Additions and Enhancements :id=core-additions
* allow for WS2812 PWM to work on DMAMUX-capable devices ([#9471](https://github.com/qmk/qmk_firmware/pull/9471))
* Newer STM32 MCUs have a DMAMUX peripheral, which allows mapping of DMAs to different DMA streams, rather than hard-defining the target streams in silicon.
* Affects STM32L4+ devices, as well as the soon-to-be-supported-by-QMK STM32G4/H7 families.
* Tested on F303/Proton C (ChibiOS v19, non-DMAMUX), G474 (ChibiOS v20, with DMAMUX).
* dual-bank STM32 bootloader support ([#8778](https://github.com/qmk/qmk_firmware/pull/8778) and [#9738](https://github.com/qmk/qmk_firmware/pull/9738))
* Adds support for STM32 dual-bank flash bootloaders, by toggling a GPIO during early init in order to charge an RC circuit attached to `BOOT0`.
* The main rationale behind this is that dual-bank STM32 devices unconditionally execute user-mode code, regardless of whether or not the user-mode code jumps to the bootloader. If either flash bank is valid (and `BOOT0` is low), then the built-in bootloader will skip any sort of DFU.
* This PR allows for the initialisation sequencing to charge the RC circuit based on the example circuit posted on Discord, effectively pulling `BOOT0` high before issuing the system reset. As the RC circuit takes a while to discharge, the system reset executes the ROM bootloader which subsequently sees `BOOT0` high, and starts executing the DFU routines.
* Tested with STM32L082 (with current QMK+current ChibiOS), and STM32G474 (against ChibiOS 20.x).
* update Space Cadet and Tap Dance features to use Custom Tapping Term when appropriate ([#6259](https://github.com/qmk/qmk_firmware/pull/6259))
* For the Tap Dance feature, this completely removes the need for the `ACTION_TAP_DANCE_FN_ADVANCED_TIME` dance.
* HID Joystick Interface ([#4226](https://github.com/qmk/qmk_firmware/pull/4226) and [#9949](https://github.com/qmk/qmk_firmware/pull/9949 "Fix Joystick Compile Issues"))
* This implements a joystick feature, including a joystick_task function called from TMK, specific keycodes for joystick buttons and a USB HID interface.
* Tested on V-USB backend and Proton C; compiles but untested on LUFA.
* In order to test, you have to add `JOYSTICK_ENABLE = yes` to your `rules.mk` and
```c
#define JOYSTICK_BUTTON_COUNT 8
#define JOYSTICK_AXES_COUNT 2
```
in your config.h.
* Christmas RGB Underglow animation now fades between green and red ([#7648](https://github.com/qmk/qmk_firmware/pull/7648))
* `RGBLIGHT_EFFECT_CHRISTMAS_INTERVAL` has been greatly decreased; please check your animation if you have customized this value.
* layer state now initializes on startup ([#8318](https://github.com/qmk/qmk_firmware/pull/8318))
* This should produce more consistent behavior between the two functions and layer masks.
* added support for HSV->RGB conversion without using CIE curve ([#9856](https://github.com/qmk/qmk_firmware/pull/9856))
* added NOEEPROM functions for RGB Matrix ([#9487](https://github.com/qmk/qmk_firmware/pull/9487))
* Added eeprom_helpers for toggle, mode, sethsv, speed, similar to rgblight versions.
* Added set_speed function.
* Added helper functions, similar to those in rgblight, in order to add NOEEPROM versions of toggle, step, hue, sat, val, and speed.
* Minor: spelling correction for EEPROM in a debug message.
* flashing firmware using `st-flash` utility from [STLink Tools](https://github.com/stlink-org/stlink) is now supported ([#9964](https://github.com/qmk/qmk_firmware/pull/9964))
* add ability to dump all makefile variables for the specified target ([#8256](https://github.com/qmk/qmk_firmware/pull/8256))
* Adds a new subtarget to builds, `dump_vars`, which allows for printing out all the variables that make knows about, after all substitutions occur.
* Example: `make handwired/onekey/proton_c:default:dump_vars`
* add ability to change the Auto Shift timeout in real time ([#8441](https://github.com/qmk/qmk_firmware/pull/8441))
* added a timer implementation for backlight on ChibiOS ([#8291](https://github.com/qmk/qmk_firmware/pull/8291))
* added a third endpoint to V-USB keyboards ([#9020](https://github.com/qmk/qmk_firmware/pull/9020))
* added a method to read the OLED display buffer from user space ([#8777](https://github.com/qmk/qmk_firmware/pull/8777))
* K-Type refactor ([#9864](https://github.com/qmk/qmk_firmware/pull/9864))
* The K-Type has been refactored to use QMK's native matrix scanning routine, and now has partial support for the RGB Matrix feature.
* Joysticks can now be used without defining analog pins ([#10169](https://github.com/qmk/qmk_firmware/pull/10169))
### Clean-ups and Optimizations :id=core-optimizations
* iWRAP protocol removed ([#9284](https://github.com/qmk/qmk_firmware/pull/9284))
* work begun for consolidation of ChibiOS platform files ([#8327](https://github.com/qmk/qmk_firmware/pull/8327) and [#9315](https://github.com/qmk/qmk_firmware/pull/9315))
* Start of the consolidation work to move the ChibiOS board definitions as well as the default set of configuration files for existing board definitions used by keyboards.
* Uses `/platforms/chibios` as previously discussed on discord.
* Consolidates the Proton C configs into the generic F303 definitions.
* Allows for defining a default set of `chconf.h`, `halconf.h`, and `mcuconf.h` files within the platform definition, which is able to be overridden by the keyboard directly, though include path ordering.
* Adds template `chconf.h`, `halconf.h`, `mcuconf.h`, and `board.h` that can be dropped into a keyboard directory, in order to override rather than replace the entire contents of the respective files.
* Removed Proton C QMK board definitions, falling back to ChibiOS board definitions with QMK overrides.
* Various tidy-ups for USB descriptor code ([#9005](https://github.com/qmk/qmk_firmware/pull/9005))
* Renamed `keyboard_led_stats` in lufa.c and ChibiOS usb_main.c to `keyboard_led_state`, as well as `vusb_keyboard_leds`, for consistency
* Formatted CDC and MIDI descriptors better
* Removed `ENDPOINT_CONFIG` macro, it seems pointless and removes the need for endpoint address defines in the middle of the endpoint numbering enum
* Fixed (possibly?) V-USB `GET_REPORT` request handling. Not sure about this one, but the existing code appears to always return an empty report - now `send_keyboard` sets this variable to the current report, matching what the LUFA code does.
* converted `CONSUMER2BLUEFRUIT()` and `CONSUMER2RN42()` macros to static inline functions ([#9055](https://github.com/qmk/qmk_firmware/pull/9055))
* Additional cleanups for V-USB code ([#9310](https://github.com/qmk/qmk_firmware/pull/9310))
* Removing the UART stuff entirely, now that we have Console support. Also fixing up various other things; switching some `debug()` calls to `dprintf()`, moved `raw_hid_report` out of the way so that we can implement the shared endpoint stuff.
* removed inclusion of `adafruit_ble.h` from `ssd1306.c` ([#9355](https://github.com/qmk/qmk_firmware/pull/9355))
* `outputselect.c` is no longer compiled if Bluetooth is disabled ([#9356](https://github.com/qmk/qmk_firmware/pull/9356))
* `analogRead()` deprecated in favor of `analogReadPin()` ([#9023](https://github.com/qmk/qmk_firmware/pull/9023))
* forcibly disable NKRO on V-USB controllers ([#9054](https://github.com/qmk/qmk_firmware/pull/9054))
* removed warning if running backlight on STM32F072 ([#10040](https://github.com/qmk/qmk_firmware/pull/10040))
* removed unused CORTEX_VTOR_INIT rules.mk option ([#10053](https://github.com/qmk/qmk_firmware/pull/10053))
* improved handling for enabling Link Time Optimization ([#9832](https://github.com/qmk/qmk_firmware/pull/9832))
* streamline rules for supporting Kiibohd bootloader ([#10129](https://github.com/qmk/qmk_firmware/pull/10129))
* Define `STM32_DMA_REQUIRED` when using DMA-based WS2812 driver on STM32 ([#10127](https://github.com/qmk/qmk_firmware/pull/10127))
* fix DMA stream ID calculation in ws2812_pwm ([#10008](https://github.com/qmk/qmk_firmware/pull/10008))
* remove support for Adafruit EZ Key Bluetooth controller ([#10103](https://github.com/qmk/qmk_firmware/pull/10103))
## QMK Infrastructure and Internals :id=qmk-internals
* Attempt to fix CI for non-master branches. ([#9308](https://github.com/qmk/qmk_firmware/pull/9308))
* Actually fetch the branch we're attempting to compare against.
* Run `qmk cformat` on `develop` branch ([#9501](https://github.com/qmk/qmk_firmware/pull/9501))
* minor refactor of Bluetooth API ([#9905](https://github.com/qmk/qmk_firmware/pull/9905))

View File

@ -1,150 +0,0 @@
# QMK Breaking Change - 2020 Nov 28 Changelog
Four times a year QMK runs a process for merging Breaking Changes. A Breaking Change is any change which modifies how QMK behaves in a way that is incompatible or potentially dangerous. We limit these changes to 4 times per year so that users can have confidence that updating their QMK tree will not break their keymaps.
## Changes Requiring User Action :id=changes-requiring-user-action
### Relocated Keyboards :id=relocated-keyboards
#### Reduce Helix keyboard build variation ([#8669](https://github.com/qmk/qmk_firmware/pull/8669))
The build commands for the Helix keyboard are:
```
make <helix_build_name>:<keymap_name>
```
For `<helix_build_name>`, specify the one in the rightmost column of the table below, such as `helix`,` helix/pico`.
| before Oct 17 2019 | Oct 17 2019 | Mar 10 2020 | Nov 28 2020 |
| ---------------------|-------------------------|-------------------------| ------------------------|
| helix/rev1 | helix/rev1 | helix/rev1 | helix/rev1 |
| helix/pico | helix/pico | helix/pico | helix/pico |
| | helix/pico/back | helix/pico/back | helix/pico/back |
| | helix/pico/under | helix/pico/under | helix/pico/under |
| | | helix/pico/sc | -- |
| | | helix/pico/sc/back | helix/pico/sc |
| | | helix/pico/sc/under | -- |
| helix/rev2 (=helix) | helix/rev2 (=helix) | helix/rev2 (=helix) | -- |
| | helix/rev2/back | helix/rev2/back | -- |
| | helix/rev2/back/oled | helix/rev2/back/oled | ( --> helix/rev2/back) |
| | helix/rev2/oled | helix/rev2/oled | helix/rev2 (=helix) |
| | helix/rev2/oled/back | helix/rev2/oled/back | helix/rev2/back |
| | helix/rev2/oled/under | helix/rev2/oled/under | helix/rev2/under |
| | | helix/rev2/sc | -- |
| | | helix/rev2/sc/back | -- |
| | | helix/rev2/sc/oled | -- |
| | | helix/rev2/sc/oledback | helix/rev2/sc |
| | | helix/rev2/sc/oledunder | -- |
| | | helix/rev2/sc/under | -- |
| | helix/rev2/under | helix/rev2/under | -- |
| | helix/rev2/under/oled | helix/rev2/under/oled | ( --> helix/rev2/under) |
#### Update the Speedo firmware for v3.0 ([#10657](https://github.com/qmk/qmk_firmware/pull/10657))
The Speedo keyboard has moved to `cozykeys/speedo/v2` as the designer prepares to release the Speedo v3.0.
| Previous Name | New Name |
| :------------ | :------------------------- |
| speedo | cozykeys/speedo/v2 |
| -- | cozykeys/speedo/v3 **new** |
#### Maartenwut/Maarten name change to evyd13/Evy ([#10274](https://github.com/qmk/qmk_firmware/pull/10274))
Maartenwut has rebranded as @evyd13, and all released Maartenwut boards have moved.
| Previous Name | New Name |
| :--------------------- | :----------------- |
| maartenwut/atom47/rev2 | evyd13/atom47/rev2 |
| maartenwut/atom47/rev3 | evyd13/atom47/rev3 |
| maartenwut/eon40 | evyd13/eon40 |
| maartenwut/eon65 | evyd13/eon65 |
| maartenwut/eon75 | evyd13/eon75 |
| maartenwut/eon87 | evyd13/eon87 |
| maartenwut/eon95 | evyd13/eon95 |
| maartenwut/gh80_1800 | evyd13/gh80_1800 |
| maartenwut/gh80_3700 | evyd13/gh80_3700 |
| maartenwut/minitomic | evyd13/minitomic |
| maartenwut/mx5160 | evyd13/mx5160 |
| maartenwut/nt660 | evyd13/nt660 |
| maartenwut/omrontkl | evyd13/omrontkl |
| maartenwut/plain60 | evyd13/plain60 |
| maartenwut/pockettype | evyd13/pockettype |
| maartenwut/quackfire | evyd13/quackfire |
| maartenwut/solheim68 | evyd13/solheim68 |
| maartenwut/ta65 | evyd13/ta65 |
| maartenwut/wasdat | evyd13/wasdat |
| maartenwut/wasdat_code | evyd13/wasdat_code |
| maartenwut/wonderland | evyd13/wonderland |
#### Xelus Valor and Dawn60 Refactors ([#10512](https://github.com/qmk/qmk_firmware/pull/10512), [#10584](https://github.com/qmk/qmk_firmware/pull/10584))
The Valor and Dawn60 keyboards by Xelus22 both now require their revisions to be specified when compiling.
| Previous Name | New Name |
| :------------ | :---------------- |
| xelus/dawn60 | xelus/dawn60/rev1 |
| xelus/valor | xelus/valor/rev1 |
### Updated Keyboard Codebases :id=keyboard-updates
#### AEboards EXT65 Refactor ([#10820](https://github.com/qmk/qmk_firmware/pull/10820))
The EXT65 codebase has been reworked so keymaps can be used with either revision.
## Core Changes :id=core-changes
### Fixes :id=core-fixes
* Reconnect the USB if users wake up a computer from the keyboard to restore the USB state ([#10088](https://github.com/qmk/qmk_firmware/pull/10088))
* Fix cursor position bug in oled_write_raw functions ([#10800](https://github.com/qmk/qmk_firmware/pull/10800))
### Additions and Enhancements :id=core-additions
* Allow MATRIX_ROWS to be greater than 32 ([#10183](https://github.com/qmk/qmk_firmware/pull/10183))
* Add support for soft serial to ATmega32U2 ([#10204](https://github.com/qmk/qmk_firmware/pull/10204))
* Allow direct control of MIDI velocity value ([#9940](https://github.com/qmk/qmk_firmware/pull/9940))
* Joystick 16-bit support ([#10439](https://github.com/qmk/qmk_firmware/pull/10439))
* Allow encoder resolutions to be set per encoder ([#10259](https://github.com/qmk/qmk_firmware/pull/10259))
* Share button state from mousekey to pointing_device ([#10179](https://github.com/qmk/qmk_firmware/pull/10179))
* Add advanced/efficient RGB Matrix Indicators ([#8564](https://github.com/qmk/qmk_firmware/pull/8564))
* OLED display update interval support ([#10388](https://github.com/qmk/qmk_firmware/pull/10388))
* Per-Key Retro Tapping ([#10622](https://github.com/qmk/qmk_firmware/pull/10622))
* Allow backlight duty cycle limit ([#10260](https://github.com/qmk/qmk_firmware/pull/10260))
* Add step sequencer feature ([#9703](https://github.com/qmk/qmk_firmware/pull/9703))
* Added `add_oneshot_mods` & `del_oneshot_mods` ([#10549](https://github.com/qmk/qmk_firmware/pull/10549))
* Add AT90USB support for serial.c ([#10706](https://github.com/qmk/qmk_firmware/pull/10706))
* Auto shift: support repeats and early registration (#9826)
### Clean-ups and Optimizations :id=core-optimizations
* Haptic and solenoid cleanup ([#9700](https://github.com/qmk/qmk_firmware/pull/9700))
* XD75 cleanup ([#10524](https://github.com/qmk/qmk_firmware/pull/10524))
* Minor change to behavior allowing display updates to continue between task ticks ([#10750](https://github.com/qmk/qmk_firmware/pull/10750))
* Change some GPIO manipulations in matrix.c to be atomic ([#10491](https://github.com/qmk/qmk_firmware/pull/10491))
* combine repeated lines of code for ATmega32U2, ATmega16U2, ATmega328 and ATmega328P ([#10837](https://github.com/qmk/qmk_firmware/pull/10837))
* Remove references to HD44780 ([#10735](https://github.com/qmk/qmk_firmware/pull/10735))
## QMK Infrastructure and Internals :id=qmk-internals
* Add ability to build a subset of all keyboards based on platform. ([#10420](https://github.com/qmk/qmk_firmware/pull/10420))
* Initialise EEPROM drivers at startup, instead of upon first execution ([#10438](https://github.com/qmk/qmk_firmware/pull/10438))
* Make bootloader_jump weak for ChibiOS ([#10417](https://github.com/qmk/qmk_firmware/pull/10417))
* Support for STM32 GPIOF,G,H,I,J,K ([#10206](https://github.com/qmk/qmk_firmware/pull/10206))
* Add milc as a dependency and remove the installed milc ([#10563](https://github.com/qmk/qmk_firmware/pull/10563))
* ChibiOS upgrade: early init conversions ([#10214](https://github.com/qmk/qmk_firmware/pull/10214))
* ChibiOS upgrade: configuration file migrator ([#9952](https://github.com/qmk/qmk_firmware/pull/9952))
* Add definition based on currently-selected serial driver. ([#10716](https://github.com/qmk/qmk_firmware/pull/10716))
* Allow for modification of output RGB values when using rgblight/rgb_matrix. ([#10638](https://github.com/qmk/qmk_firmware/pull/10638))
* Allow keyboards/keymaps to execute code at each main loop iteration ([#10530](https://github.com/qmk/qmk_firmware/pull/10530))
* qmk cformat ([#10767](https://github.com/qmk/qmk_firmware/pull/10767))
* Add a Make variable to easily enable DEBUG_MATRIX_SCAN_RATE on the command line ([#10824](https://github.com/qmk/qmk_firmware/pull/10824))
* update Chibios OS USB for the OTG driver ([#8893](https://github.com/qmk/qmk_firmware/pull/8893))
* Fixup version.h writing when using `SKIP_VERSION=yes` ([#10972](https://github.com/qmk/qmk_firmware/pull/10972), [#10974](https://github.com/qmk/qmk_firmware/pull/10974))
* Rename ledmatrix.h to match .c file ([#7949](https://github.com/qmk/qmk_firmware/pull/7949))
* Split RGB_MATRIX_ENABLE into _ENABLE and _DRIVER ([#10231](https://github.com/qmk/qmk_firmware/pull/10231))
* Split LED_MATRIX_ENABLE into _ENABLE and _DRIVER ([#10840](https://github.com/qmk/qmk_firmware/pull/10840))

View File

@ -1,169 +0,0 @@
# QMK Breaking Changes - 2021 February 27 Changelog
## Changes Requiring User Action
The following keyboards have had their source moved within QMK:
Old Keyboard Name | New Keyboard Name
:---------------- | :----------------
bear_65 | jacky_studio/bear_65
s7_elephant/rev1 | jacky_studio/s7_elephant/rev1
s7_elephant/rev2 | jacky_studio/s7_elephant/rev2
aplx6 | aplyard/aplx6/rev1
southpaw75 | fr4/southpaw75
The [Aplyard Aplx6 rev2](https://github.com/qmk/qmk_firmware/tree/0.12.0/keyboards/aplyard/aplx6/rev1) and the [FR4Boards Unix60](https://github.com/qmk/qmk_firmware/tree/0.12.0/keyboards/fr4/unix60) have also been added as part of these changes.
Additionally, the `handwired/bluepill/bluepill70` keyboard has been removed.
## Core Changes
### ChibiOS Update and Config Migration
QMK's ChibiOS and ChibiOS-Contrib submodules have been updated to version 20.3.2.
Along with this, QMK now provides default configuration files for all commonly-supported ARM microcontrollers running on ChibiOS. As such, keyboards are now only required to define settings which differ from the defaults, thereby reducing the size of pull requests for keyboards running atop ChibiOS.
### QMK Infrastructure and Internals
Python is now required to build QMK. The minimum Python version has been increased to 3.7.
The power of `info.json` has been massively expanded. Most keyboard parameters can now be expressed in `info.json` instead of `config.h`/`rules.mk`. This should make maintaining keyboards easier, and will enable tooling that can allow non-technical users to add and maintain QMK keyboards without writing any code.
To ease migration a new command has been provided, `qmk generate-info-json -kb <keyboard>`. You can use this command to generate a complete `info.json` file for a keyboard and then remove the duplicate information from `config.h` and `rules.mk`.
Detailed example showing how to generate a new info.json and identify duplicate keys:
```
user@hostname:~/qmk_firmware/keyboards/lets_split:0$ qmk generate-info-json > new-info.json
user@hostname:~/qmk_firmware/keyboards/lets_split:0$ mv new-info.json info.json
user@hostname:~/qmk_firmware/keyboards/lets_split:0$ qmk info
⚠ lets_split/rev2: DEBOUNCE in config.h is overwriting debounce in info.json
⚠ lets_split/rev2: DEVICE_VER in config.h is overwriting usb.device_ver in info.json
⚠ lets_split/rev2: DIODE_DIRECTION in config.h is overwriting diode_direction in info.json
⚠ lets_split/rev2: MANUFACTURER in config.h is overwriting manufacturer in info.json
⚠ lets_split/rev2: RGB_DI_PIN in config.h is overwriting rgblight.pin in info.json
⚠ lets_split/rev2: RGBLED_NUM in config.h is overwriting rgblight.led_count in info.json
⚠ lets_split/rev2: PRODUCT_ID in config.h is overwriting usb.pid in info.json
⚠ lets_split/rev2: VENDOR_ID in config.h is overwriting usb.vid in info.json
⚠ lets_split/rev2: Matrix pins are specified in both info.json and config.h, the config.h values win.
⚠ lets_split/rev2: LAYOUTS in rules.mk is overwriting community_layouts in info.json
⚠ lets_split/rev2: Feature bootmagic is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature mousekey is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature extrakey is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature console is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature command is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature nkro is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature backlight is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature midi is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature audio is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature unicode is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature bluetooth is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature rgblight is specified in both info.json and rules.mk, the rules.mk value wins.
⚠ lets_split/rev2: Feature sleep_led is specified in both info.json and rules.mk, the rules.mk value wins.
Keyboard Name: Let's Split
Manufacturer: Wootpatoot
Website:
Maintainer: QMK Community
Keyboard Folder: lets_split/rev2
Layouts: LAYOUT, LAYOUT_ortho_4x12
Size: 13 x 4
Processor: atmega32u4
Bootloader: caterina
```
## Detailed Change List
### Changes Requiring User Action
* Refactor Jacky's boards (Bear65 and S7 Elephant) ([#10528](https://github.com/qmk/qmk_firmware/pull/10528), [#11981](https://github.com/qmk/qmk_firmware/pull/11981))
* Remove handwired/bluepill ([#11415](https://github.com/qmk/qmk_firmware/pull/11415))
* Aplyard Aplx6 Added rev2 & move rev1+rev2 to parent folder ([#10973](https://github.com/qmk/qmk_firmware/pull/10973))
* added `unix60`, moved together with `southpaw75` into `fr4` folder ([#11195](https://github.com/qmk/qmk_firmware/pull/11195))
### Fixes
* GCC 10 can now compile Drop Alt firmware ([#9485](https://github.com/qmk/qmk_firmware/pull/9485))
* Fix compiling on `develop` branch ([#11409](https://github.com/qmk/qmk_firmware/pull/11409))
* Fix broken keyboards and keymaps ([#11412](https://github.com/qmk/qmk_firmware/pull/11412), [#11427](https://github.com/qmk/qmk_firmware/pull/11427), [#11448](https://github.com/qmk/qmk_firmware/pull/11448), [#11447](https://github.com/qmk/qmk_firmware/pull/11447), [#11473](https://github.com/qmk/qmk_firmware/pull/11473), [#11584](https://github.com/qmk/qmk_firmware/pull/11584), [#11600](https://github.com/qmk/qmk_firmware/pull/11600))
* Fixed up build dependencies so that generated files are made available before compiling any object files ([#11435](https://github.com/qmk/qmk_firmware/pull/11435))
* Formatting fixes ([`378edd9`](https://github.com/qmk/qmk_firmware/commit/378edd9491f2ab0d3d8a970c9a8e64bc03ca15cf), [#11594](https://github.com/qmk/qmk_firmware/pull/11594), [`27749e1`](https://github.com/qmk/qmk_firmware/commit/27749e1c967c02c05e62a89a0ae2776dd7e5158c))
* Include `stdbool.h` in `uart.h` to fix compiler errors ([#11728](https://github.com/qmk/qmk_firmware/pull/11728))
* Decouple USB events from the USB interrupt handler in ChibiOS ([#10437](https://github.com/qmk/qmk_firmware/pull/10437))
* Fixes an issue while using Backlight and External EEPROM at the same time that would cause the MCU to lock up.
* Address wake from sleep instability ([#11450](https://github.com/qmk/qmk_firmware/pull/11450))
* Fix pressing media key on a momentarily activated layer may lead to missing key up events ([#11162](https://github.com/qmk/qmk_firmware/pull/11162))
* Fix an RGB initialisation bug on Massdrop keyboards ([#12022](https://github.com/qmk/qmk_firmware/pull/12022))
* Fix file encoding errors on Windows, and layouts not correctly merging into info.json ([#12039](https://github.com/qmk/qmk_firmware/pull/12039))
### Additions and Enhancements
* Allow configuration of serial USART timeout ([#11057](https://github.com/qmk/qmk_firmware/pull/11057))
* Added Sync Timer feature for Split Common keyboards ([#10997](https://github.com/qmk/qmk_firmware/pull/10997))
* Add modifier state to the Split Common transport ([#10400](https://github.com/qmk/qmk_firmware/pull/10400))
* Add Pix keyboard by sendz (`sendyyeah/pix`) ([#11154](https://github.com/qmk/qmk_firmware/pull/11154))
* Implement option for kinetic mouse movement algorithm for mouse keys ([#6739](https://github.com/qmk/qmk_firmware/pull/6739))
* Improved Language Specific Keycodes for US International and Extended Layouts ([#11307](https://github.com/qmk/qmk_firmware/pull/11307))
* Modified `QWIIC_ENABLE` in `rules.mk` to be yes/no choice, adding `QWIIC_DRIVERS` to allow for inclusion of specific drivers ([#11426](https://github.com/qmk/qmk_firmware/pull/11426))
* Allow AVR-based keyboards to override the `bootloader_jump` function ([#11418](https://github.com/qmk/qmk_firmware/pull/11418))
* Refine RGBLight Twinkle effect to be smoother (use breathing curve) ([#11350](https://github.com/qmk/qmk_firmware/pull/11350))
* Keep track of last matrix activity ([#10730](https://github.com/qmk/qmk_firmware/pull/10730), [`ab375d3`](https://github.com/qmk/qmk_firmware/commit/ab375d3d075c105f09a1ddd0e155f178225518bc), [#11552](https://github.com/qmk/qmk_firmware/pull/11552))
* fix `matrix_io_delay()` timing in `quantum/matrix.c` ([#9603](https://github.com/qmk/qmk_firmware/pull/9603))
* Keep track of encoder activity ([#11595](https://github.com/qmk/qmk_firmware/pull/11595))
* Backport ChibiOS Audio changes from ZSA ([#11687](https://github.com/qmk/qmk_firmware/pull/11687))
* Add support for 8 buttons to mouse report ([#10807](https://github.com/qmk/qmk_firmware/pull/10807))
* Allow `post_config.h` to be implemented in userspace ([#11519](https://github.com/qmk/qmk_firmware/pull/11519))
* Adds AT90USB162 support ([#11570](https://github.com/qmk/qmk_firmware/pull/11570))
* Stop sounds when suspended ([#11553](https://github.com/qmk/qmk_firmware/pull/11553))
* Revamp spidey3 userspace and keymaps ([#11768](https://github.com/qmk/qmk_firmware/pull/11768))
* Add support for analog USBPD on STM32G4xx ([#11824](https://github.com/qmk/qmk_firmware/pull/11824))
* Master matrix can now be transported to the slave side in Split Common keyboards ([#11046](https://github.com/qmk/qmk_firmware/pull/11046))
* RGBLight: Allow configurable default settings ([#11912](https://github.com/qmk/qmk_firmware/pull/11912))
* Add `tap_code_delay(code, delay)` ([#11913](https://github.com/qmk/qmk_firmware/pull/11913), [#11938](https://github.com/qmk/qmk_firmware/pull/11938))
### Clean-ups and Optimizations
* Fix duplicate `I2C_KEYMAP_START` define ([#11237](https://github.com/qmk/qmk_firmware/pull/11237))
* Rewrite APA102 support for RGBLight ([#10894](https://github.com/qmk/qmk_firmware/pull/10894))
* Update ADB Protocol implementation in TMK Core ([#11168](https://github.com/qmk/qmk_firmware/pull/11168))
* Remove unused `action_get_macro()` usages in user files ([#11165](https://github.com/qmk/qmk_firmware/pull/11165))
* Remove `QMK_KEYBOARD_CONFIG_H` ([#11576](https://github.com/qmk/qmk_firmware/pull/11576))
* Remove duplicated housekeeping in `arm_atsam` ([#11672](https://github.com/qmk/qmk_firmware/pull/11672))
* UART driver refactor ([#11637](https://github.com/qmk/qmk_firmware/pull/11637))
* Move `transport.c` to `QUANTUM_LIB_SRC` ([#11751](https://github.com/qmk/qmk_firmware/pull/11751))
* Remove `MIDI_ENABLE_STRICT` from user keymaps ([#11750](https://github.com/qmk/qmk_firmware/pull/11750))
* Remove legacy print backward compatiblitly ([#11805](https://github.com/qmk/qmk_firmware/pull/11805))
* Migrate mousekey to quantum ([#11804](https://github.com/qmk/qmk_firmware/pull/11804))
* remove deprecated `qmk json-keymap` ([#11823](https://github.com/qmk/qmk_firmware/pull/11823))
* Remove FAUXCLICKY feature (deprecated) ([#11829](https://github.com/qmk/qmk_firmware/pull/11829))
* Refactor platform logic within `print.h` ([#11863](https://github.com/qmk/qmk_firmware/pull/11863))
* Audio system overhaul ([#11820](https://github.com/qmk/qmk_firmware/pull/11820))
* Output selection: Remove "USB and BT" option for Bluetooth ([#11940](https://github.com/qmk/qmk_firmware/pull/11940))
* `tmk_core/common/action.c`: refactor for code size; merge multiple `case`s into one ([#11943](https://github.com/qmk/qmk_firmware/pull/11943))
* Remove rules and settings from user keymaps that are already defined at keyboard level ([#11966](https://github.com/qmk/qmk_firmware/pull/11966))
### QMK Infrastructure and Internals
* bump to python 3.7 ([#11408](https://github.com/qmk/qmk_firmware/pull/11408))
* `develop` branch is now formatted as part of CI tasks ([#11893](https://github.com/qmk/qmk_firmware/pull/11893), [#11905](https://github.com/qmk/qmk_firmware/pull/11905), [#11907](https://github.com/qmk/qmk_firmware/pull/11907), [#11928](https://github.com/qmk/qmk_firmware/pull/11928), [#11936](https://github.com/qmk/qmk_firmware/pull/11936))
* Configure keyboard matrix from info.json ([#10817](https://github.com/qmk/qmk_firmware/pull/10817))
* Validate our JSON data using json_schema ([#11101](https://github.com/qmk/qmk_firmware/pull/11101))
* Use the schema to eliminate custom code ([#11108](https://github.com/qmk/qmk_firmware/pull/11108))
* Add support for specifying BOARD in `info.json` ([#11492](https://github.com/qmk/qmk_firmware/pull/11492))
* Document how to add data driven configurations ([#11502](https://github.com/qmk/qmk_firmware/pull/11502))
* Process info.json rules ahead of userspace rules ([#11542](https://github.com/qmk/qmk_firmware/pull/11542))
* Remove duplicate manufacturer definitions ([#11544](https://github.com/qmk/qmk_firmware/pull/11544))
* Update list of MCUs in `keyboard.jsonschema` to mirror `qmk.constants.py` ([#11688](https://github.com/qmk/qmk_firmware/pull/11688))
* Create a system to map between `info.json` and `config.h`/`rules.mk` ([#11548](https://github.com/qmk/qmk_firmware/pull/11548))
* Make LAYOUT parsing more robust ([#12000](https://github.com/qmk/qmk_firmware/pull/12000))
### ChibiOS Update and Config Migration
* Add board specific to Proton-C, with usual defaults turned on to match Pro-Micro ([#10976](https://github.com/qmk/qmk_firmware/pull/10976))
* Disable almost all ChibiOS subsystems in default configs ([#11111](https://github.com/qmk/qmk_firmware/pull/11111))
* Config Migrations ([#10418](https://github.com/qmk/qmk_firmware/pull/10418), [#11123](https://github.com/qmk/qmk_firmware/pull/11123), [#11261](https://github.com/qmk/qmk_firmware/pull/11261), [#11413](https://github.com/qmk/qmk_firmware/pull/11413), [#11414](https://github.com/qmk/qmk_firmware/pull/11414), [#11495](https://github.com/qmk/qmk_firmware/pull/11495), [#11504](https://github.com/qmk/qmk_firmware/pull/11504), [#11529](https://github.com/qmk/qmk_firmware/pull/11529), [#11588](https://github.com/qmk/qmk_firmware/pull/11588), [#11598](https://github.com/qmk/qmk_firmware/pull/11598), [#11607](https://github.com/qmk/qmk_firmware/pull/11607), [#11617](https://github.com/qmk/qmk_firmware/pull/11617), [#11620](https://github.com/qmk/qmk_firmware/pull/11620), [#11630](https://github.com/qmk/qmk_firmware/pull/11630), [#11646](https://github.com/qmk/qmk_firmware/pull/11646), [#11689](https://github.com/qmk/qmk_firmware/pull/11689), [#11846](https://github.com/qmk/qmk_firmware/pull/11846), [#11927](https://github.com/qmk/qmk_firmware/pull/11927), [#12001](https://github.com/qmk/qmk_firmware/pull/12001))
* Disable subsystems repo-wide ([#11449](https://github.com/qmk/qmk_firmware/pull/11449))
* Leftover early initialisation conversions ([#11615](https://github.com/qmk/qmk_firmware/pull/11615))
* Fix up comments showing how to execute config migration ([#11621](https://github.com/qmk/qmk_firmware/pull/11621))
* Add STM32G431 and STM32G474 board definitions ([#11793](https://github.com/qmk/qmk_firmware/pull/11793))

View File

@ -1,227 +0,0 @@
# QMK Breaking Changes - 2021 May 29 Changelog
## Notable Changes :id=notable-changes
### RGB Matrix support for split common ([#11055](https://github.com/qmk/qmk_firmware/pull/11055)) :id=rgb-matrix-split-common
Split boards can now use RGB Matrix without defining a custom matrix.
### Teensy 3.6 support ([#12258](https://github.com/qmk/qmk_firmware/pull/12258)) :id=teensy-3-6-support
Added support for MK66F18 (Teensy 3.6) microcontroller.
### New command: qmk console ([#12828](https://github.com/qmk/qmk_firmware/pull/12828)) :id=new-command-qmk-console
A new `qmk console` command has been added for attaching to your keyboard's console. It operates similiarly to QMK Toolbox by allowing you to connect to one or more keyboard consoles to display debugging messages.
### Improved command: qmk config :id=improve-command-qmk-config
We've updated the `qmk config` command to show only the configuration items you have actually set. You can now display (almost) all of the available configuration options, along with their default values, using `qmk config -a`.
### LED Matrix Improvements ([#12509](https://github.com/qmk/qmk_firmware/pull/12509), [#12580](https://github.com/qmk/qmk_firmware/pull/12580), [#12588](https://github.com/qmk/qmk_firmware/pull/12588), [#12633](https://github.com/qmk/qmk_firmware/pull/12633), [#12651](https://github.com/qmk/qmk_firmware/pull/12651), [#12685](https://github.com/qmk/qmk_firmware/pull/12685)) :id=led-matrix-improvements
LED Matrix has been improved with effects, CIE1931 curves, and a task system.
## Changes Requiring User Action :id=changes-requiring-user-action
### Updated Keyboard Codebases :id=updated-keyboard-codebases
* Durgod keyboard refactor in preparation for adding additional durgod keyboards ([#11978](https://github.com/qmk/qmk_firmware/pull/11978))
* Updated Function96 with V2 files and removed chconf.h and halconf.h ([#12613](https://github.com/qmk/qmk_firmware/pull/12613))
* [Keyboard] updated a vendor name / fixed minor keymap issues ([#12881](https://github.com/qmk/qmk_firmware/pull/12881))
* [Keyboard] Corne - Remove legacy revision support ([#12226](https://github.com/qmk/qmk_firmware/pull/12226))
The following keyboards have had their source moved within QMK:
Old Keyboard Name | New Keyboard Name
:---------------- | :----------------
crkbd/rev1/common | crkbd/rev1
function96 | function96/v1
nckiibs/flatbread60 | delikeeb/flatbread60
nckiibs/vaguettelite | delikeeb/vaguettelite
nckiibs/vanana/rev1 | delikeeb/vanana/rev1
nckiibs/vanana/rev2 | delikeeb/vanana/rev2
nckiibs/vaneela | delikeeb/vaneela
nckiibs/vaneelaex | delikeeb/vaneelaex
nckiibs/waaffle/rev3/elite_c | delikeeb/waaffle/rev3/elite_c
nckiibs/waaffle/rev3/pro_micro | delikeeb/waaffle/rev3/pro_micro
The [Function96 V2](https://github.com/qmk/qmk_firmware/tree/0.13.0/keyboards/function96/v2) has also been added as part of these changes.
The codebase for the [Durgod K320](https://github.com/qmk/qmk_firmware/tree/0.13.0/keyboards/durgod/k320) has been reworked in anticipation of additional Durgod keyboards gaining QMK support.
Additionally, the `crkbd/rev1/legacy` keyboard has been removed.
### Bootmagic Deprecation and Refactor ([#12172](https://github.com/qmk/qmk_firmware/pull/12172)) :id=bootmagic-deprecation-and-refactor
QMK has decided to deprecate the full Bootmagic feature and leave Bootmagic Lite as the only remaining option.
This pull request changes the behavior of `BOOTMAGIC_ENABLE` such that specifying `BOOTMAGIC_ENABLE = yes` enables Bootmagic Lite instead of full Bootmagic.
If attempts to use Bootmagic functionality result in unexpected behavior, check your `rules.mk` file and change the `BOOTMAGIC_ENABLE` setting to specify either `lite` or `full`.
#### Tentative Deprecation Schedule
This is the current planned roadmap for the behavior of `BOOTMAGIC_ENABLE`:
- From 2021 May 29, setting `BOOTMAGIC_ENABLE = yes` will enable Bootmagic Lite instead of full Bootmagic.
- From 2021 Aug 28, `BOOTMAGIC_ENABLE` must be either `yes`, `lite`, or `no` setting `BOOTMAGIC_ENABLE = full` will cause compilation to fail.
- From 2021 Nov 27, `BOOTMAGIC_ENABLE` must be either `yes` or `no` setting `BOOTMAGIC_ENABLE = lite` will cause compilation to fail.
### Removal of LAYOUT_kc ([#12160](https://github.com/qmk/qmk_firmware/pull/12160)) :id=removal-of-layout-kc
We've removed support for `LAYOUT_kc` macros, if your keymap uses one you will need to update it use a regular `LAYOUT` macro.
### Encoder callbacks are now boolean ([#12805](https://github.com/qmk/qmk_firmware/pull/12805), [#12985](https://github.com/qmk/qmk_firmware/pull/12985)) :id=encoder-callback-boolean
To allow for keyboards to override (or not) keymap level code the `encoder_update_kb` function has been changed from `void` to `bool`. You will need to update your function definition to reflect this and ensure that you return a `true` or `false` value.
Example code before change:
```c
void encoder_update_kb(uint8_t index, bool clockwise) {
encoder_update_user(index, clockwise);
}
void encoder_update_user(uint8_t index, bool clockwise) {
if (index == 0) { /* First encoder */
if (clockwise) {
tap_code(KC_PGDN);
} else {
tap_code(KC_PGUP);
}
} else if (index == 1) { /* Second encoder */
if (clockwise) {
tap_code(KC_DOWN);
} else {
tap_code(KC_UP);
}
}
}
```
Example code after change:
```c
bool encoder_update_kb(uint8_t index, bool clockwise) {
return encoder_update_user(index, clockwise);
}
bool encoder_update_user(uint8_t index, bool clockwise) {
if (index == 0) { /* First encoder */
if (clockwise) {
tap_code(KC_PGDN);
} else {
tap_code(KC_PGUP);
}
} else if (index == 1) { /* Second encoder */
if (clockwise) {
tap_code(KC_DOWN);
} else {
tap_code(KC_UP);
}
}
return true;
// If you return true, this will allow the keyboard level code to run, as well.
//Returning false will override the keyboard level code. Depending on how the keyboard level function is set up.
}
```
## Core Changes :id=core-changes
### Fixes :id=core-fixes
* Fix connection issue in split keyboards when slave and OLED display are connected via I2C (fixes #9335) ([#11487](https://github.com/qmk/qmk_firmware/pull/11487))
* Terrazzo: Fix wrong LED Matrix function names ([#12561](https://github.com/qmk/qmk_firmware/pull/12561))
* Apply the "NO_LIMITED_CONTROLLER_CONNECT" fix to atmega16u2 ([#12482](https://github.com/qmk/qmk_firmware/pull/12482))
* Fix comment parsing ([#12750](https://github.com/qmk/qmk_firmware/pull/12750))
* Turn OLED off on suspend in soundmonster Corne keymap ([#10419](https://github.com/qmk/qmk_firmware/pull/10419))
* Fixup build errors on `develop` branch. ([#12723](https://github.com/qmk/qmk_firmware/pull/12723))
* Fix syntax error when compiling for ARM ([#12866](https://github.com/qmk/qmk_firmware/pull/12866))
* Add missing LED Matrix suspend code to suspend.c ([#12878](https://github.com/qmk/qmk_firmware/pull/12878))
* Fix spelling mistake regarding LED Matrix in split_common. ([#12888](https://github.com/qmk/qmk_firmware/pull/12888))
* [Keymap] Fix QWERTY/DVORAK status output for kzar keymap ([#12895](https://github.com/qmk/qmk_firmware/pull/12895))
* Fixup housekeeping from being invoked twice per loop. ([#12933](https://github.com/qmk/qmk_firmware/pull/12933))
* wait for matrix row signal to go HIGH for every row ([#12945](https://github.com/qmk/qmk_firmware/pull/12945))
* ensure we do not conflict with existing keymap aliases ([#12976](https://github.com/qmk/qmk_firmware/pull/12976))
* [Keyboard] Fix Terrazzo build failure ([#12977](https://github.com/qmk/qmk_firmware/pull/12977))
* Do not hard set config in CPTC files ([#11864](https://github.com/qmk/qmk_firmware/pull/11864))
### Additions and Enhancements :id=core-additions
* ARM - Refactor SLEEP_LED to support more platforms ([#8403](https://github.com/qmk/qmk_firmware/pull/8403))
* Add ability to toggle One Shot functionality ([#4198](https://github.com/qmk/qmk_firmware/pull/4198))
* Add RGB Matrix support to Split Common ([#11055](https://github.com/qmk/qmk_firmware/pull/11055))
* Add support for complementary outputs to the ChibiOS WS2812 PWM driver ([#11988](https://github.com/qmk/qmk_firmware/pull/11988))
* Enable RGB Matrix for Corne ([#12091](https://github.com/qmk/qmk_firmware/pull/12091))
* Set default OLED Update Interval for Split Keyboards to improve matrix scan performance ([#12107](https://github.com/qmk/qmk_firmware/pull/12107))
* Add support for MK66F18 (Teensy 3.6) micro controller ([#12258](https://github.com/qmk/qmk_firmware/pull/12258))
* Split RGB Matrix support for RGBKB Zygomorph ([#11083](https://github.com/qmk/qmk_firmware/pull/11083))
* Add baudrate and circular buffer to ARM WS2812 SPI config ([#12216](https://github.com/qmk/qmk_firmware/pull/12216))
* Add keyboard level weak function for slave matrix scan ([#12317](https://github.com/qmk/qmk_firmware/pull/12317))
* Add link to schematic on EasyEDA for XD60 ([#12018](https://github.com/qmk/qmk_firmware/pull/12018))
* Add Config functions for LED Matrix ([#12361](https://github.com/qmk/qmk_firmware/pull/12361))
* Add pin definitions for MK66F18 ([#12419](https://github.com/qmk/qmk_firmware/pull/12419))
* add kinesis/kint36 keyboard ([#10171](https://github.com/qmk/qmk_firmware/pull/10171))
* Add support for producing UF2-format binaries. ([#12435](https://github.com/qmk/qmk_firmware/pull/12435))
* Implement CIE1931 curve for LED Matrix ([#12417](https://github.com/qmk/qmk_firmware/pull/12417))
* Change `BOOTMAGIC_ENABLE=yes` to use Bootmagic Lite ([#12172](https://github.com/qmk/qmk_firmware/pull/12172))
* Add kzar keymap for Kinesis Advantage ([#12444](https://github.com/qmk/qmk_firmware/pull/12444))
* LED Matrix: suspend code ([#12509](https://github.com/qmk/qmk_firmware/pull/12509))
* LED Matrix: Task system ([#12580](https://github.com/qmk/qmk_firmware/pull/12580))
* Add missing RGB_MODE_TWINKLE / RGB_M_TW keycodes ([#11935](https://github.com/qmk/qmk_firmware/pull/11935))
* Enhancement of WPM feature ([#11727](https://github.com/qmk/qmk_firmware/pull/11727))
* Add Per Key functionality for AutoShift ([#11536](https://github.com/qmk/qmk_firmware/pull/11536))
* LED Matrix: Reactive effect buffers & advanced indicators ([#12588](https://github.com/qmk/qmk_firmware/pull/12588))
* LED Matrix: support for Split keyboards ([#12633](https://github.com/qmk/qmk_firmware/pull/12633))
* add setting to enable infinite timeout for leader key ([#6580](https://github.com/qmk/qmk_firmware/pull/6580), [#12721](https://github.com/qmk/qmk_firmware/pull/12721 "Fix bad PR merge for #6580"))
* Update ADC driver for STM32F1xx, STM32F3xx, STM32F4xx ([#12403](https://github.com/qmk/qmk_firmware/pull/12403))
* Add initial support for tinyuf2 bootloader (when hosted on F411 blackpill) ([#12600](https://github.com/qmk/qmk_firmware/pull/12600))
* Add support for STM32F446 MCU ([#12619](https://github.com/qmk/qmk_firmware/pull/12619))
* Add STM32L433 and L443 support ([#12063](https://github.com/qmk/qmk_firmware/pull/12063))
* Added OLED fade out support ([#12086](https://github.com/qmk/qmk_firmware/pull/12086))
* New command: `qmk console` ([#12828](https://github.com/qmk/qmk_firmware/pull/12828))
* LED Matrix: Effects! ([#12651](https://github.com/qmk/qmk_firmware/pull/12651))
* Add setup, clone, and env to the list of commands we allow even with broken modules ([#12868](https://github.com/qmk/qmk_firmware/pull/12868))
* LED Matrix: Documentation ([#12685](https://github.com/qmk/qmk_firmware/pull/12685))
* Add function to allow repeated blinking of one layer ([#12237](https://github.com/qmk/qmk_firmware/pull/12237))
* Add support for up to 4 IS31FL3733 drivers ([#12342](https://github.com/qmk/qmk_firmware/pull/12342))
* Convert Encoder callbacks to be boolean functions ([#12805](https://github.com/qmk/qmk_firmware/pull/12805), [#12985](https://github.com/qmk/qmk_firmware/pull/12985))
* [Keymap] Update to Drashna keymap and user code (based on develop) ([#12936](https://github.com/qmk/qmk_firmware/pull/12936))
* Add Full-duplex serial driver for ARM boards ([#9842](https://github.com/qmk/qmk_firmware/pull/9842))
* Document LED_MATRIX_FRAMEBUFFER_EFFECTS ([#12987](https://github.com/qmk/qmk_firmware/pull/12987))
* Backlight: add defines for default level and breathing state ([#12560](https://github.com/qmk/qmk_firmware/pull/12560), [#13024](https://github.com/qmk/qmk_firmware/pull/13024))
* Add dire message about LUFA mass storage bootloader ([#13014](https://github.com/qmk/qmk_firmware/pull/13014))
### Clean-ups and Optimizations :id=core-optimizations
* Overhaul bootmagic logic to have single entrypoint ([#8532](https://github.com/qmk/qmk_firmware/pull/8532))
* Refactor of USB code within split_common ([#11890](https://github.com/qmk/qmk_firmware/pull/11890))
* Begin the process of deprecating `bin/qmk` in favor of the global CLI ([#12109](https://github.com/qmk/qmk_firmware/pull/12109))
* LED Matrix: decouple from Backlight ([#12054](https://github.com/qmk/qmk_firmware/pull/12054))
* Remove `FUNC()` ([#12161](https://github.com/qmk/qmk_firmware/pull/12161))
* Move gpio wait logic to wait.h ([#12067](https://github.com/qmk/qmk_firmware/pull/12067))
* LED Matrix: Clean up includes ([#12197](https://github.com/qmk/qmk_firmware/pull/12197))
* Consistently use bin/qmk when that script is called ([#12286](https://github.com/qmk/qmk_firmware/pull/12286))
* LED Matrix: Additional common_features.mk tweaks ([#12187](https://github.com/qmk/qmk_firmware/pull/12187))
* LED Matrix: Fix up eeconfig code ([#12327](https://github.com/qmk/qmk_firmware/pull/12327))
* Big quantum_keycodes cleanup ([#12249](https://github.com/qmk/qmk_firmware/pull/12249))
* Fix up builds that are now too big for `develop` branch. ([#12495](https://github.com/qmk/qmk_firmware/pull/12495))
* [Keyboard] kint36: switch to sym_eager_pk debouncing ([#12626](https://github.com/qmk/qmk_firmware/pull/12626))
* [Keyboard] kint2pp: reduce input latency by ≈10ms ([#12625](https://github.com/qmk/qmk_firmware/pull/12625))
* eeprom driver: Refactor where eeprom driver initialisation (and EEPROM emulation initialisation) occurs to make it non-target-specific. ([#12671](https://github.com/qmk/qmk_firmware/pull/12671))
* Change RGB/LED Matrix to use a simple define for USB suspend ([#12697](https://github.com/qmk/qmk_firmware/pull/12697), [#12770](https://github.com/qmk/qmk_firmware/pull/12770 "Fixing transport's led/rgb matrix suspend state logic"))
* Remove pointless SERIAL_LINK_ENABLE rules ([#12846](https://github.com/qmk/qmk_firmware/pull/12846))
* Make Swap Hands use PROGMEM ([#12284](https://github.com/qmk/qmk_firmware/pull/12284))
* Remove KEYMAP and LAYOUT_kc ([#12160](https://github.com/qmk/qmk_firmware/pull/12160))
* Rename `point_t` -> `led_point_t` ([#12864](https://github.com/qmk/qmk_firmware/pull/12864))
* Deprecate `send_unicode_hex_string()` ([#12602](https://github.com/qmk/qmk_firmware/pull/12602))
* [Keyboard] Remove redundant legacy and common headers for crkbd ([#13023](https://github.com/qmk/qmk_firmware/pull/13023))
### QMK Infrastructure and Internals :id=qmk-internals
* trivial change to trigger api update ([`b15288fb87`](https://github.com/qmk/qmk_firmware/commit/b15288fb87))
* fix some references to bin/qmk that slipped in ([#12832](https://github.com/qmk/qmk_firmware/pull/12832))
* Resolve a number of warnings in `qmk generate-api` ([#12833](https://github.com/qmk/qmk_firmware/pull/12833))
* Fix another bin/qmk reference ([#12856](https://github.com/qmk/qmk_firmware/pull/12856))
* Use milc.subcommand.config instead of qmk.cli.config ([#12915](https://github.com/qmk/qmk_firmware/pull/12915))

View File

@ -1,557 +0,0 @@
# QMK Breaking Changes - 2021 August 28 Changelog
## Notable Features :id=notable-features
### Combo processing improvements ([#8591](https://github.com/qmk/qmk_firmware/pull/8591)) :id=combo-processing-improvements
Combo processing has been reordered with respect to keypress handling, allowing for much better compatibility with mod taps.
It is also now possible to define combos that have keys overlapping with other combos, triggering only one. For example, a combo of `A`, `B` can coexist with a longer combo of `A`, `B`, `C` -- previous functionality would trigger both combos if all three keys were pressed.
### Key Overrides ([#11422](https://github.com/qmk/qmk_firmware/pull/11422)) :id=key-overrides
QMK now has a new feature: [key overrides](https://docs.qmk.fm/#/feature_key_overrides). This feature allows for overriding the output of key combinations involving modifiers. As an example, pressing <kbd>Shift+2</kbd> normally results in an <kbd>@</kbd> on US-ANSI keyboard layouts -- the new key overrides allow for adding similar functionality, but for any <kbd>modifier + key</kbd> press.
To illustrate, it's now possible to use the key overrides feature to translate <kbd>Shift + Backspace</kbd> into <kbd>Delete</kbd> -- an often-requested example of where this functionality comes in handy.
There's far more to describe that what lives in this changelog, so head over to the [key overrides documentation](https://docs.qmk.fm/#/feature_key_overrides) for more examples and info.
### Digitizer support ([#12851](https://github.com/qmk/qmk_firmware/pull/12851))
QMK gained the ability to pretend to be a digitizer device -- much like a tablet device. A mouse uses delta-coordinates -- move up, move right -- but a digitizer works with absolute coordinates -- top left, bottom right.
## Changes Requiring User Action :id=changes-requiring-user-action
### Updated Keyboard Codebases :id=updated-keyboard-codebases
The following keyboards have had their source moved within QMK:
Old Keyboard Name | New Keyboard Name
------------------------------|---------------------------------------------------------
aeboards/constellation | aeboards/constellation/rev1, aeboards/constellation/rev2
bakeneko65 | bakeneko65/rev2, bakeneko65/rev3
bm16a | kprepublic/bm16a
bm16s | kprepublic/bm16s
bm40hsrgb | kprepublic/bm40hsrgb
bm43a | kprepublic/bm43a
bm60poker | kprepublic/bm60poker
bm60rgb | kprepublic/bm60rgb
bm60rgb_iso | kprepublic/bm60rgb_iso
bm68rgb | kprepublic/bm68rgb
clawsome/gamebuddy | clawsome/gamebuddy/v1_0, clawsome/gamebuddy/v1_m
cospad | kprepublic/cospad
custommk/genesis | custommk/genesis/rev1, custommk/genesis/rev2
daisy | ktec/daisy
durgod/k320 | durgod/k3x0/k320
dztech/volcano660 | ilumkb/volcano660
ergodone | ktec/ergodone
gmmk/pro | gmmk/pro/ansi, gmmk/pro/iso
handwired/p1800fl | team0110/p1800fl
jj40 | kprepublic/jj40
jj4x4 | kprepublic/jj4x4
jj50 | kprepublic/jj50
kyria | splitkb/kyria
lazydesigners/the60 | lazydesigners/the60/rev1, lazydesigners/the60/rev2
matrix/m12og | matrix/m12og/rev1, matrix/m12og/rev2
mechlovin/hannah65/mechlovin9 | mechlovin/mechlovin9/rev1, mechlovin/mechlovin9/rev2
peiorisboards/ixora | coarse/ixora
ramonimbao/mona | ramonimbao/mona/v1, ramonimbao/mona/v1_1
staryu | ktec/staryu
tokyo60 | tokyokeyboard/tokyo60
vinta | coarse/vinta
xd002 | xiudi/xd002
xd004 | xiudi/xd004
xd60 | xiudi/xd60
xd68 | xiudi/xd68
xd75 | xiudi/xd75
xd84 | xiudi/xd84
xd84pro | xiudi/xd84pro
xd87 | xiudi/xd87
xd96 | xiudi/xd96
### Bootmagic Full Removal ([#13846](https://github.com/qmk/qmk_firmware/pull/13846)) :id=bootmagic-full-removal
As noted during last breaking changes cycle, QMK has decided to deprecate the full Bootmagic feature and leave Bootmagic Lite as the only remaining option.
This pull request changes the behavior of `BOOTMAGIC_ENABLE` such that specifying `full` results in an error, allowing only `no`, `yes`, or `lite`.
Currently `lite` is the equivalent of `yes` in `rules.mk`. Next cycle the use of the `lite` keyword will be prevented in favour of `yes` -- any new submissions should now be using `yes` or `no` to minimise disruption.
#### Bootmagic Full Deprecation Schedule
This is the current roadmap for the behavior of `BOOTMAGIC_ENABLE`:
- (done) From 2021 May 29, setting `BOOTMAGIC_ENABLE = yes` will enable Bootmagic Lite instead of full Bootmagic.
- (now) From 2021 Aug 28, `BOOTMAGIC_ENABLE` must be either `yes`, `lite`, or `no` setting `BOOTMAGIC_ENABLE = full` will cause compilation to fail.
- (next) From 2021 Nov 27, `BOOTMAGIC_ENABLE` must be either `yes` or `no` setting `BOOTMAGIC_ENABLE = lite` will cause compilation to fail.
### DIP switch callbacks are now boolean ([#13399](https://github.com/qmk/qmk_firmware/pull/13399)) :id=dip-switch-boolean
To match the encoder change last breaking changes cycle, DIP switch callbacks now return `bool`, too.
Example code before change:
```c
void dip_switch_update_kb(uint8_t index, bool active) {
dip_switch_update_user(index, active);
}
void dip_switch_update_user(uint8_t index, bool active) {
switch (index) {
case 0:
if(active) { audio_on(); } else { audio_off(); }
break;
}
}
void dip_switch_update_mask_kb(uint32_t state) {
dip_switch_update_mask_user(state);
}
void dip_switch_update_mask_user(uint32_t state) {
if (state & (1UL<<0) && state & (1UL<<1)) {
layer_on(_ADJUST); // C on esc
} else {
layer_off(_ADJUST);
}
}
```
Example code after change:
```c
bool dip_switch_update_kb(uint8_t index, bool active) {
if !(dip_switch_update_user(index, active)) { return false; }
return true;
}
bool dip_switch_update_user(uint8_t index, bool active) {
switch (index) {
case 0:
if(active) { audio_on(); } else { audio_off(); }
break;
}
return true; // Returning true allows keyboard code to execute, false will tell the keyboard code "I've already handled it".
}
bool dip_switch_update_mask_kb(uint32_t state) {
if (!dip_switch_update_mask_user(state)) { return false; }
return true;
}
bool dip_switch_update_mask_user(uint32_t state) {
if (state & (1UL<<0) && state & (1UL<<1)) {
layer_on(_ADJUST); // C on esc
} else {
layer_off(_ADJUST);
}
return true; // Returning true allows keyboard code to execute, false will tell the keyboard code "I've already handled it".
}
```
## Notable core changes :id=notable-core
### Split transport improvements :id=split-transport-improvements
Split keyboards gained a significant amount of improvements during this breaking changes cycle, specifically:
* Extensible split data sync ([#11930](https://github.com/qmk/qmk_firmware/pull/11930)) -- rewritten data sharing between sides, allowing for data transfer only when required, as well as enabling keyboards and keymaps to define their own shared data.
* Full-duplex ARM USART split ([#13081](https://github.com/qmk/qmk_firmware/pull/13081)) -- adds to the previous half-duplex driver and now allows for full-duplex support on ARM.
* Make solo half of split keyboards (more) usable. ([#13523](https://github.com/qmk/qmk_firmware/pull/13523)) -- allows the slave to be disconnected, enabling one-handed use.
* Switch split_common to CRC subsystem ([#13418](https://github.com/qmk/qmk_firmware/pull/13418))
!> If you're updating your split keyboard, you will need to flash both sides of the split with the your firmware.
### Teensy 4.x support ([#13056](https://github.com/qmk/qmk_firmware/pull/13056), [#13076](https://github.com/qmk/qmk_firmware/pull/13076), [#13077](https://github.com/qmk/qmk_firmware/pull/13077)) :id=teensy-4-x-support
Updated ChibiOS and ChibiOS-Contrib, which brought in support for Teensy 4.x dev boards, running NXP i.MX1062.
### Data Driven Improvements ([#13366](https://github.com/qmk/qmk_firmware/pull/13366))
QMK's pursuit of data-driven keyboards has progressed, allowing substantially more configurable options to be specified in `info.json`.
#### Tags
Tags will let you categorize your keyboard, and will be used in the future to allow browsing and sorting through keyboards in QMK. Tags are free-form text identifiers that identify attributes about your keyboard. To add tags you simply add a `tags` key to your `info.json`:
"tags": ["tkl", "backlight", "encoder"]
#### Dot Notation
With this release we are moving towards using JSON dot notation in more places. For example, when using `qmk info -f text`:
```
$ qmk info -f text -kb clueboard/card
bootloader: atmel-dfu
debounce: 20
diode_direction: ROW2COL
features.audio: True
features.backlight: True
features.bluetooth: False
features.bootmagic: False
features.command: True
features.console: True
features.extrakey: True
features.lto: True
features.midi: False
features.mousekey: True
features.nkro: False
features.rgblight: True
features.unicode: False
height: 8
keyboard_folder: clueboard/card
keyboard_name: Cluecard
layout_aliases.LAYOUT: LAYOUT_all
layouts: LAYOUT_all
maintainer: skullydazed
manufacturer: Clueboard
matrix_pins.cols: F1, F6, F7
matrix_pins.rows: B4, F0, F4, F5
platform: unknown
processor: atmega32u4
processor_type: avr
protocol: LUFA
rgblight.brightness_steps: 17
rgblight.hue_steps: 10
rgblight.led_count: 4
rgblight.pin: E6
rgblight.saturation_steps: 17
split.transport.protocol: serial
usb.device_ver: 0x0001
usb.pid: 0x2330
usb.vid: 0xC1ED
width: 10
```
#### New configuration keys
We've added dozens of new keys to `info.json` so that you can configure more than ever without writing a single line of code. A quick overview of the new items you can configure:
* `audio.pins`, `audio.voices`
* `backlight.breathing`, `backlight.breathing_period`, `backlight.levels`, `backlight.pin`,
* `bluetooth.driver`, `bluetooth.lto`
* `bootloader_instructions`
* `build.debounce_type`, `build.firmware_format`, `build.lto`
* `combo.count`, `combo.term`
* `leader_key.timing`, `leader_key.strict_processing`, `leader_key.timeout`
* `matrix.custom`, `matrix.custom_lite`, `matrix.ghost`, `matrix.io_delay`
* `mouse_key.enabled`, `mouse_key.delay`, `mouse_key.interval`, `mouse_key.max_speed`, `mouse_key.time_to_max`, `mouse_key.wheel_delay`
* `oneshot.tap_toggle`, `oneshot.timeout`
* `rgblight.layers.blink`, `rgblight.layers.enabled`, `rgblight.layers.max`, `rgblight.layers.override_rgb`, `rgblight.rgbw`
* `split.enabled`, `split.matrix_grid`, `split.matrix_pins`, `split.main`, `split.soft_serial_pin`, `split.soft_serial_speed`, `split.transport.protocol`, `split.transport.sync_matrix_state`, `split.transport.sync_modifiers`, `split.usb_detect`
* `tapping.force_hold`, `tapping.force_hold_per_key`, `tapping.ignore_mod_tap_interrupt`, `tapping.ignore_mod_tap_interrupt_per_key`, `tapping.permissive_hold`, `tapping.permissive_hold_per_key`, `tapping.retro`, `tapping.retro_per_key`, `tapping.term`, `tapping.term_per_key`, `tapping.toggle`
* `usb.force_nkro`, `usb.max_power`, `usb.no_startup_check`, `usb.polling_interval`, `usb.shared_endpoint.keyboard`, `usb.shared_endpoint.mouse`, `usb.suspend_wakeup_delay`, `usb.wait_for`
* `qmk.keys_per_scan`, `qmk.tap_keycode_delay`, `qmk.tap_capslock_delay`
### Codebase restructure and cleanup :id=codebase-restructure
QMK was originally based on TMK, and has grown in size considerably since its first inception. To keep moving things forward, restructure of some of the core areas of the code is needed to support new concepts and new hardware, and progress is happening along those lines:
* Move RGBLight code into its own folder ([#13312](https://github.com/qmk/qmk_firmware/pull/13312))
* Migrate platform independent code from tmk_core -> quantum ([#13673](https://github.com/qmk/qmk_firmware/pull/13673))
* matrix_scan_x -> x_task ([#13748](https://github.com/qmk/qmk_firmware/pull/13748))
* Move some led drivers to common folder ([#13749](https://github.com/qmk/qmk_firmware/pull/13749))
* Move chibios board files to allow tmk_core platform migration ([#13777](https://github.com/qmk/qmk_firmware/pull/13777))
* Begin to carve out platform/protocol API - Single main loop ([#13843](https://github.com/qmk/qmk_firmware/pull/13843))
* Relocate platform specific drivers ([#13894](https://github.com/qmk/qmk_firmware/pull/13894))
* Move all the flash logic from tmk_core ([#13927](https://github.com/qmk/qmk_firmware/pull/13927))
* Move USB Host Shield and Arduino core to `lib/` ([#13973](https://github.com/qmk/qmk_firmware/pull/13973))
* Unify behaviour of wait on AVR ([#14025](https://github.com/qmk/qmk_firmware/pull/14025))
* Move nix folder alongside vagrant ([#14132](https://github.com/qmk/qmk_firmware/pull/14132))
* Align some quantum sub-directories ([#14134](https://github.com/qmk/qmk_firmware/pull/14134))
---
## Full changelist
Core:
* Arm ps2 mouse interrupt ([#6490](https://github.com/qmk/qmk_firmware/pull/6490))
* Process combos earlier & overlapping combos ([#8591](https://github.com/qmk/qmk_firmware/pull/8591))
* Swap buttons on PS2 Mouse/Trackball ([#9205](https://github.com/qmk/qmk_firmware/pull/9205))
* Add HOLD_ON_OTHER_KEY_PRESS option for dual-role keys ([#9404](https://github.com/qmk/qmk_firmware/pull/9404))
* add yaml_build_options target ([#10533](https://github.com/qmk/qmk_firmware/pull/10533))
* Warn when building a board that uses arm_atsam ([#10904](https://github.com/qmk/qmk_firmware/pull/10904))
* Key Overrides ([#11422](https://github.com/qmk/qmk_firmware/pull/11422))
* Refactor `quantum/command.{c,h}` for code size & {read,maintain}ability ([#11842](https://github.com/qmk/qmk_firmware/pull/11842))
* Extensible split data sync ([#11930](https://github.com/qmk/qmk_firmware/pull/11930))
* Move print/debug files to quantum ([#12069](https://github.com/qmk/qmk_firmware/pull/12069))
* Unconditionally call led_init_ports ([#12116](https://github.com/qmk/qmk_firmware/pull/12116))
* Support using a timer for wait_us() on ChibiOS-based boards ([#12211](https://github.com/qmk/qmk_firmware/pull/12211))
* Add support for NO_PIN to all matrix types ([#12238](https://github.com/qmk/qmk_firmware/pull/12238))
* Avoid 8-bit timer overflows in debounce algorithms ([#12240](https://github.com/qmk/qmk_firmware/pull/12240))
* Add Per Key exclusions for Haptic Feedback ([#12386](https://github.com/qmk/qmk_firmware/pull/12386))
* Steno combinedkeys ([#12538](https://github.com/qmk/qmk_firmware/pull/12538))
* eeprom_stm32: implement high density wear leveling ([#12567](https://github.com/qmk/qmk_firmware/pull/12567))
* eeprom_i2c driver: added EXTERNAL_EEPROM_WP_PIN configuration option. ([#12617](https://github.com/qmk/qmk_firmware/pull/12617))
* Add CRC8 calculation subsystem to quantum ([#12641](https://github.com/qmk/qmk_firmware/pull/12641))
* Limit saturation for RGB_MATRIX_JELLYBEAN_RAINDROPS ([#12669](https://github.com/qmk/qmk_firmware/pull/12669))
* Add asym_eager_defer_pk debounce type ([#12689](https://github.com/qmk/qmk_firmware/pull/12689))
* Include lib8tion.c into RGB/LED matrix build list ([#12699](https://github.com/qmk/qmk_firmware/pull/12699))
* Add readPort() and some API to 'tmk_core/common/*/gpio.h' ([#12754](https://github.com/qmk/qmk_firmware/pull/12754))
* add wait_cpuclock() macro for AVR and CPU_CLOCK macro ([#12755](https://github.com/qmk/qmk_firmware/pull/12755))
* Trigger a wakeup after USB Reset on ChibiOS. ([#12831](https://github.com/qmk/qmk_firmware/pull/12831))
* Add sync_timer support over serial_link (i.e. Ergodox Infinity) ([#12845](https://github.com/qmk/qmk_firmware/pull/12845))
* Digitizer HID interface : absolute coordinates for mouse cursor ([#12851](https://github.com/qmk/qmk_firmware/pull/12851))
* Add config.h and rules.mk support for data driven keymaps ([#12859](https://github.com/qmk/qmk_firmware/pull/12859))
* Add alternate ldscript for STM32duino (F103xB) ([#12914](https://github.com/qmk/qmk_firmware/pull/12914))
* `keymap_extras`: Remove deprecated defines ([#12949](https://github.com/qmk/qmk_firmware/pull/12949))
* Retain brightness with lighting layers ([#13025](https://github.com/qmk/qmk_firmware/pull/13025))
* Move optical sensor code to drivers folder ([#13044](https://github.com/qmk/qmk_firmware/pull/13044))
* Change the prototype of matrix_output_unselect_delay() ([#13045](https://github.com/qmk/qmk_firmware/pull/13045))
* Add weak refs on reading rows/cols. ([#13062](https://github.com/qmk/qmk_firmware/pull/13062))
* Use single memcmp to determine if matrix changed. ([#13064](https://github.com/qmk/qmk_firmware/pull/13064))
* Improve layer mask handling ([#13065](https://github.com/qmk/qmk_firmware/pull/13065))
* mousekey: expose current report to users ([#13069](https://github.com/qmk/qmk_firmware/pull/13069))
* ChibiOS SVN mirror script. ([#13070](https://github.com/qmk/qmk_firmware/pull/13070))
* Added right vs left specific pin assignments for dip switch ([#13074](https://github.com/qmk/qmk_firmware/pull/13074))
* make RESET key work with Teensy 4.x ([#13076](https://github.com/qmk/qmk_firmware/pull/13076))
* wire up flash make target for Teensy 4.x ([#13077](https://github.com/qmk/qmk_firmware/pull/13077))
* bump USB spec version in device descriptor to 2.0 ([#13078](https://github.com/qmk/qmk_firmware/pull/13078))
* Unite half-duplex and full-duplex serial drivers ([#13081](https://github.com/qmk/qmk_firmware/pull/13081))
* Add ST7565 LCD driver ([#13089](https://github.com/qmk/qmk_firmware/pull/13089))
* `spi_master` Kinetis support ([#13098](https://github.com/qmk/qmk_firmware/pull/13098))
* GMMK Pro RGB Support ([#13147](https://github.com/qmk/qmk_firmware/pull/13147))
* Remove dfu-util arguments from mcu_selection ([#13150](https://github.com/qmk/qmk_firmware/pull/13150))
* Add subcommand to generate version.h ([#13151](https://github.com/qmk/qmk_firmware/pull/13151))
* Add oled_invert ([#13172](https://github.com/qmk/qmk_firmware/pull/13172))
* ST7565 invert ([#13237](https://github.com/qmk/qmk_firmware/pull/13237))
* RGB Matrix eeprom write limiting ([#13238](https://github.com/qmk/qmk_firmware/pull/13238))
* Temporary disable of CRC ([#13252](https://github.com/qmk/qmk_firmware/pull/13252))
* Move LED/RGB Matrix code into their own directories ([#13257](https://github.com/qmk/qmk_firmware/pull/13257))
* Skip EEPROM writes once done. ([#13293](https://github.com/qmk/qmk_firmware/pull/13293))
* Remove rgblight stubs ([#13302](https://github.com/qmk/qmk_firmware/pull/13302))
* Allow settable SPI divisor for AW20216 driver, set default to 4 ([#13309](https://github.com/qmk/qmk_firmware/pull/13309))
* Move RGBLight code into its own folder ([#13312](https://github.com/qmk/qmk_firmware/pull/13312))
* Unify matrix for split common and regular matrix ([#13330](https://github.com/qmk/qmk_firmware/pull/13330))
* Relocate RGB/HSV color defs to a more fitting place ([#13377](https://github.com/qmk/qmk_firmware/pull/13377))
* Adds support for STM32L412xB, STM32L422xB. ([#13383](https://github.com/qmk/qmk_firmware/pull/13383))
* Convert Dip Switch callbacks to boolean functions ([#13399](https://github.com/qmk/qmk_firmware/pull/13399))
* Use string literals for `SERIAL_NUMBER` ([#13403](https://github.com/qmk/qmk_firmware/pull/13403))
* Switch split_common to CRC subsystem ([#13418](https://github.com/qmk/qmk_firmware/pull/13418))
* Improve 'show_build_options' target ([#13425](https://github.com/qmk/qmk_firmware/pull/13425))
* AW20216 use register increment for framebuffer flushes ([#13430](https://github.com/qmk/qmk_firmware/pull/13430))
* Allow invert of SPLIT_HAND_PIN logic ([#13433](https://github.com/qmk/qmk_firmware/pull/13433))
* chibios: bootloader: use integer pointers as volatile ([#13450](https://github.com/qmk/qmk_firmware/pull/13450))
* Refactor OLED to allow easy addition of other types ([#13454](https://github.com/qmk/qmk_firmware/pull/13454))
* Dual RGB Matrix IS31FL3737 driver support to address #13442 ([#13457](https://github.com/qmk/qmk_firmware/pull/13457))
* Enable g_is31_leds PROGMEM for RGB Matrix IS31FL3737 driver ([#13480](https://github.com/qmk/qmk_firmware/pull/13480))
* Switch Ergodox Infinity over to split_common ([#13481](https://github.com/qmk/qmk_firmware/pull/13481))
* Make solo half of split keyboards (more) usable. ([#13523](https://github.com/qmk/qmk_firmware/pull/13523))
* Enable sync of OLED/ST7565 display on/off state on Splits ([#13542](https://github.com/qmk/qmk_firmware/pull/13542))
* Revert "Add rgblight to RGB Matrix VPATH" ([#13559](https://github.com/qmk/qmk_firmware/pull/13559))
* Move `SENDSTRING_BELL` code to `send_string.h` ([#13566](https://github.com/qmk/qmk_firmware/pull/13566))
* Migrate platform independent code from tmk_core -> quantum ([#13673](https://github.com/qmk/qmk_firmware/pull/13673))
* Avoid LTO conficts on arm_atsam ([#13676](https://github.com/qmk/qmk_firmware/pull/13676))
* Allow for removal of hysteresis on 4x encoders ([#13698](https://github.com/qmk/qmk_firmware/pull/13698))
* Port new_keyboard.sh to CLI ([#13706](https://github.com/qmk/qmk_firmware/pull/13706))
* Align AW20216 driver ([#13712](https://github.com/qmk/qmk_firmware/pull/13712))
* Haptic: driver-> feature ([#13713](https://github.com/qmk/qmk_firmware/pull/13713))
* Add support for STM32F407x MCUs. ([#13718](https://github.com/qmk/qmk_firmware/pull/13718))
* Remove legacy BACKLIGHT_CUSTOM_DRIVER option ([#13731](https://github.com/qmk/qmk_firmware/pull/13731))
* Minor tidy up of key overrides ([#13747](https://github.com/qmk/qmk_firmware/pull/13747))
* matrix_scan_x -> x_task ([#13748](https://github.com/qmk/qmk_firmware/pull/13748))
* Move some led drivers to common folder ([#13749](https://github.com/qmk/qmk_firmware/pull/13749))
* Allow for higher USB Polling rate on ATSAM boards ([#13755](https://github.com/qmk/qmk_firmware/pull/13755))
* Rgb matrix/enable modes explicitly ([#13758](https://github.com/qmk/qmk_firmware/pull/13758))
* Move chibios board files to allow tmk_core platform migration ([#13777](https://github.com/qmk/qmk_firmware/pull/13777))
* __flash? ([#13799](https://github.com/qmk/qmk_firmware/pull/13799))
* `--parallel` improvements ([#13800](https://github.com/qmk/qmk_firmware/pull/13800))
* Speed up pimoroni trackball driver ([#13823](https://github.com/qmk/qmk_firmware/pull/13823))
* Add a toggle key for GUI On/Off in Magic feature ([#13830](https://github.com/qmk/qmk_firmware/pull/13830))
* Begin to carve out platform/protocol API - Single main loop ([#13843](https://github.com/qmk/qmk_firmware/pull/13843))
* Remove Full Bootmagic ([#13846](https://github.com/qmk/qmk_firmware/pull/13846))
* Remove backwards compatibility of debounce names ([#13877](https://github.com/qmk/qmk_firmware/pull/13877))
* Relocate platform specific drivers ([#13894](https://github.com/qmk/qmk_firmware/pull/13894))
* Remove ONEHAND_ENABLE ([#13920](https://github.com/qmk/qmk_firmware/pull/13920))
* Move all the flash logic from tmk_core ([#13927](https://github.com/qmk/qmk_firmware/pull/13927))
* adding uf2 flash support for blackpill 401 ([#13968](https://github.com/qmk/qmk_firmware/pull/13968))
* Unify behaviour of wait on AVR ([#14025](https://github.com/qmk/qmk_firmware/pull/14025))
* Add qmk-hid bootloader detection support to `qmk console` ([#14038](https://github.com/qmk/qmk_firmware/pull/14038))
* Align DIP_SWITCH_PINS_RIGHT implementation with encoders ([#14079](https://github.com/qmk/qmk_firmware/pull/14079))
* Tidy up quantum.c now some of tmk_core has been merged ([#14083](https://github.com/qmk/qmk_firmware/pull/14083))
* Improve pmw3360 sensor and make it more hardware agnostic ([#14097](https://github.com/qmk/qmk_firmware/pull/14097))
* Move nix folder alongside vagrant ([#14132](https://github.com/qmk/qmk_firmware/pull/14132))
* Align some quantum sub-directories ([#14134](https://github.com/qmk/qmk_firmware/pull/14134))
* Revert 14083 && 14144 ([#14150](https://github.com/qmk/qmk_firmware/pull/14150))
CLI:
* allow LINE_PINxx for Teensy 4.x pins ([#13247](https://github.com/qmk/qmk_firmware/pull/13247))
* Remove the redundant pin name validation ([#13251](https://github.com/qmk/qmk_firmware/pull/13251))
* Move all our CLI file formatters to the format dir ([#13296](https://github.com/qmk/qmk_firmware/pull/13296))
* Refactor doctor.py into a directory ([#13298](https://github.com/qmk/qmk_firmware/pull/13298))
* Add git and venv info to doctor's output ([#13405](https://github.com/qmk/qmk_firmware/pull/13405))
* Matrix consistency check ([#13470](https://github.com/qmk/qmk_firmware/pull/13470))
* Remove references to info.json `width` and `height` in CLI ([#13728](https://github.com/qmk/qmk_firmware/pull/13728))
* Make `qmk doctor` more lenient about system config ([#13804](https://github.com/qmk/qmk_firmware/pull/13804))
* Defer the expensive search for layout macros until info.json has been processed ([#14007](https://github.com/qmk/qmk_firmware/pull/14007))
Submodule updates:
* Update ChibiOS, ChibiOS-Contrib. ([#13056](https://github.com/qmk/qmk_firmware/pull/13056))
* Update LUFA (18-07-2021) and add QMK-HID Bootloader support ([#13588](https://github.com/qmk/qmk_firmware/pull/13588))
* Update LUFA Submodule (2021-07-30) ([#13819](https://github.com/qmk/qmk_firmware/pull/13819))
* Bump gtest ([#13885](https://github.com/qmk/qmk_firmware/pull/13885))
* Update ChibiOS-Contrib, mirroring script. ([#13896](https://github.com/qmk/qmk_firmware/pull/13896))
* Move USB Host Shield and Arduino core to `lib/` ([#13973](https://github.com/qmk/qmk_firmware/pull/13973))
Keyboards:
* Migrate keyboards using uGFX to LED_MATRIX ([#9657](https://github.com/qmk/qmk_firmware/pull/9657))
* Remove MIDI Configuration boilerplate ([#11151](https://github.com/qmk/qmk_firmware/pull/11151))
* manyboard macro ([#11896](https://github.com/qmk/qmk_firmware/pull/11896))
* Moved tokyo60/ into tokyokeyboard/tokyo60/. ([#12023](https://github.com/qmk/qmk_firmware/pull/12023))
* Organize KPrepublic, K.T.E.C, xiudi boards into directories ([#12159](https://github.com/qmk/qmk_firmware/pull/12159))
* Add Durgod Taurus K310 keyboard ([#12314](https://github.com/qmk/qmk_firmware/pull/12314))
* add support for m65 and simple 5x13 ortholinear ([#12315](https://github.com/qmk/qmk_firmware/pull/12315))
* Relocalize and Update p1800fl ([#12425](https://github.com/qmk/qmk_firmware/pull/12425))
* GameBuddy v1.M ([#12637](https://github.com/qmk/qmk_firmware/pull/12637))
* Add mechlovin9 rev2 PCB ([#12767](https://github.com/qmk/qmk_firmware/pull/12767))
* Add RGB matrix support for Kyria ([#12789](https://github.com/qmk/qmk_firmware/pull/12789))
* RGB Matrix working for Sofle RGB ([#12861](https://github.com/qmk/qmk_firmware/pull/12861))
* Add Durgod Hades, Galaxy and Venus Keyboards ([#12893](https://github.com/qmk/qmk_firmware/pull/12893))
* kint36: set correct EEPROM size ([#12946](https://github.com/qmk/qmk_firmware/pull/12946))
* Updated encoder_update_user on my keymap to follow the new signature on quantum ([#13152](https://github.com/qmk/qmk_firmware/pull/13152))
* Add Creator Pro by SergioPoverony ([#13154](https://github.com/qmk/qmk_firmware/pull/13154))
* Use the new ST7565 driver on Ergodox Infinity ([#13165](https://github.com/qmk/qmk_firmware/pull/13165))
* Refactor atom47 and add rev4 and rev5 ([#13201](https://github.com/qmk/qmk_firmware/pull/13201))
* Add Bakeneko65 V3 and revision folders ([#13228](https://github.com/qmk/qmk_firmware/pull/13228))
* Keyboards/RGBKB/Mün ([#13239](https://github.com/qmk/qmk_firmware/pull/13239))
* Optimize our jsonschema by using refs ([#13271](https://github.com/qmk/qmk_firmware/pull/13271))
* Handwired/Stream_Cheap/2x4: Add via support ([#13297](https://github.com/qmk/qmk_firmware/pull/13297))
* ez_maker/directpins for easy one-offs in qmk_configurator ([#13321](https://github.com/qmk/qmk_firmware/pull/13321))
* add kinT kinesis keyboard controller (kint41 variant) ([#13333](https://github.com/qmk/qmk_firmware/pull/13333))
* Error log cleanup ([#13349](https://github.com/qmk/qmk_firmware/pull/13349))
* Drashna's split updates ([#13350](https://github.com/qmk/qmk_firmware/pull/13350))
* Migrate SHIFT_ESC and RGB `fn_actions` to Grave Escape and RGB keycodes ([#13360](https://github.com/qmk/qmk_firmware/pull/13360))
* Add a lot more data to info.json ([#13366](https://github.com/qmk/qmk_firmware/pull/13366))
* Remove `API_SYSEX_ENABLE`s from rules.mk ([#13389](https://github.com/qmk/qmk_firmware/pull/13389))
* gmmk/pro/mike1808 keymap ([#13398](https://github.com/qmk/qmk_firmware/pull/13398))
* Remove deprecated callbacks for encoders and dip switches ([#13404](https://github.com/qmk/qmk_firmware/pull/13404))
* first pass: matrix consistency improvements ([#13471](https://github.com/qmk/qmk_firmware/pull/13471))
* Migrate more `fn_actions` stuff ([#13502](https://github.com/qmk/qmk_firmware/pull/13502))
* add simple gmmk pro macos keymap with rgb ([#13504](https://github.com/qmk/qmk_firmware/pull/13504))
* move volcano660 to ilumkb folder ([#13550](https://github.com/qmk/qmk_firmware/pull/13550))
* Valor Rev 2 ([#13551](https://github.com/qmk/qmk_firmware/pull/13551))
* Split GMMK Pro PCBs into separate revisions ([#13570](https://github.com/qmk/qmk_firmware/pull/13570))
* Remove the vision_division keyboard ([#13571](https://github.com/qmk/qmk_firmware/pull/13571))
* Develop - Change uint32_t to layer_state_t ([#13596](https://github.com/qmk/qmk_firmware/pull/13596))
* Develop - DC01 left ([#13597](https://github.com/qmk/qmk_firmware/pull/13597))
* Created "paddlegame" keymap ([#13629](https://github.com/qmk/qmk_firmware/pull/13629))
* Add timer_avr to includes for broken builds ([#13641](https://github.com/qmk/qmk_firmware/pull/13641))
* Disable console by default on all Keebio boards ([#13649](https://github.com/qmk/qmk_firmware/pull/13649))
* Enable LTO by default on BastardKB Scylla ([#13664](https://github.com/qmk/qmk_firmware/pull/13664))
* Reduce compile size for dz60rgb v2.1 ([#13680](https://github.com/qmk/qmk_firmware/pull/13680))
* Clean up remaining RGB_DISABLE_WHEN_USB_SUSPENDED defines ([#13689](https://github.com/qmk/qmk_firmware/pull/13689))
* Remove some legacy files ([#13715](https://github.com/qmk/qmk_firmware/pull/13715))
* [Keyboard Update] Change to L422 ([#13717](https://github.com/qmk/qmk_firmware/pull/13717))
* Update kyria make path example ([#13720](https://github.com/qmk/qmk_firmware/pull/13720))
* Drashna's Defaults cleanup ([#13722](https://github.com/qmk/qmk_firmware/pull/13722))
* Reduce firmware size in prep for #12670 ([#13724](https://github.com/qmk/qmk_firmware/pull/13724))
* Tidy up rgbkb/mun ([#13801](https://github.com/qmk/qmk_firmware/pull/13801))
* Make default keymap for GMMK Pro reflect stock ([#13850](https://github.com/qmk/qmk_firmware/pull/13850))
* Rework as per 9824 ([#13898](https://github.com/qmk/qmk_firmware/pull/13898))
* Remove console from keebio via keyboards ([#13901](https://github.com/qmk/qmk_firmware/pull/13901))
* Drashna split transport improvement ([#13905](https://github.com/qmk/qmk_firmware/pull/13905))
* Copy GMMK Pro screw specs to ISO readme ([#13908](https://github.com/qmk/qmk_firmware/pull/13908))
* Clean up remaining RGB_DISABLE_WHEN_USB_SUSPENDED defines Part 2 ([#13912](https://github.com/qmk/qmk_firmware/pull/13912))
* Add andrebrait layout for GMMK Pro ([#13932](https://github.com/qmk/qmk_firmware/pull/13932))
* Updated RGB Matrix suspend define part 3 ([#13954](https://github.com/qmk/qmk_firmware/pull/13954))
* Improve andrebrait keymap ([#13985](https://github.com/qmk/qmk_firmware/pull/13985))
* Drashna's Improve OLEDs and custom Split code ([#14063](https://github.com/qmk/qmk_firmware/pull/14063))
* Kyria default reformat ([#14080](https://github.com/qmk/qmk_firmware/pull/14080))
* Feature rich keymap for GMMK Pro (ANSI) ([#14120](https://github.com/qmk/qmk_firmware/pull/14120))
Keyboard fixes:
* Fix LED mapping for GMMK Pro ([#13189](https://github.com/qmk/qmk_firmware/pull/13189))
* Fix up SplitKB keyboards ([#13511](https://github.com/qmk/qmk_firmware/pull/13511))
* Keyboards/sol rev2 fix ([#13533](https://github.com/qmk/qmk_firmware/pull/13533))
* Fix MATRIX_COLS for aeboards/constellation/rev2 ([#13633](https://github.com/qmk/qmk_firmware/pull/13633))
* Fix errors with matrix_output_unselect_delay function calls ([#13645](https://github.com/qmk/qmk_firmware/pull/13645))
* Fix default keymap for 0xCB 1337 keyboard ([#13646](https://github.com/qmk/qmk_firmware/pull/13646))
* Fix Matrix Row number for ggkeyboards/genisis ([#13647](https://github.com/qmk/qmk_firmware/pull/13647))
* Fix matrix issues with Promethium ([#13648](https://github.com/qmk/qmk_firmware/pull/13648))
* Fix dc01/left so that it doesn't throw a warning ([#13653](https://github.com/qmk/qmk_firmware/pull/13653))
* Remove broken, unmaintained converter/ibm_5291 ([#13658](https://github.com/qmk/qmk_firmware/pull/13658))
* Quick hack to fix Astro65 board ([#13665](https://github.com/qmk/qmk_firmware/pull/13665))
* Fix symmetric70_proto build break on develop branch ([#13667](https://github.com/qmk/qmk_firmware/pull/13667))
* Fix matrix delay on Drop boards ([#13671](https://github.com/qmk/qmk_firmware/pull/13671))
* Fix split matrix for sekigon grs 70ec ([#13672](https://github.com/qmk/qmk_firmware/pull/13672))
* Fix type on pandora via keymap ([#13681](https://github.com/qmk/qmk_firmware/pull/13681))
* Fix & clean up tronguylabs/m122_3270 ([#13684](https://github.com/qmk/qmk_firmware/pull/13684))
* Fix up xd002 rgb keymaps ([#13685](https://github.com/qmk/qmk_firmware/pull/13685))
* Dactyl Manuform cleanup ([#13686](https://github.com/qmk/qmk_firmware/pull/13686))
* Fix Q1 change dip switch to bool ([#13687](https://github.com/qmk/qmk_firmware/pull/13687))
* Fix compile size for the Merge UM70 via keymap ([#13690](https://github.com/qmk/qmk_firmware/pull/13690))
* Fix compile size for the Lets Split Sockets via keymap ([#13691](https://github.com/qmk/qmk_firmware/pull/13691))
* Fix Compile size on ungodly Launch Pad ([#13692](https://github.com/qmk/qmk_firmware/pull/13692))
* dirty fix ([#13695](https://github.com/qmk/qmk_firmware/pull/13695))
* Fix compile size for the Vitamins Included via keymap ([#13696](https://github.com/qmk/qmk_firmware/pull/13696))
* Fix typo in Dactyl Manuform ([#13740](https://github.com/qmk/qmk_firmware/pull/13740))
* Fix compile issues due to LED changes ([#13821](https://github.com/qmk/qmk_firmware/pull/13821))
* Fix SRC include for matrix/m20add issi driver ([#13826](https://github.com/qmk/qmk_firmware/pull/13826))
* fix develop branch move file ([#13832](https://github.com/qmk/qmk_firmware/pull/13832))
* Fix knops keymaps ([#13872](https://github.com/qmk/qmk_firmware/pull/13872))
* Switch Draculad to using WPM char hack ([#13886](https://github.com/qmk/qmk_firmware/pull/13886))
* Fix up builds after #8591 ([#13900](https://github.com/qmk/qmk_firmware/pull/13900))
* Fix matrix_output_unselect_delay for handwired/xealousbrown ([#13913](https://github.com/qmk/qmk_firmware/pull/13913))
* Fixup rgb matrix config for KBD67 mkII boards ([#13931](https://github.com/qmk/qmk_firmware/pull/13931))
* Fix compliation for ferris 0.2 bling ([#13937](https://github.com/qmk/qmk_firmware/pull/13937))
* Fix some additional bootmagic settings ([#13979](https://github.com/qmk/qmk_firmware/pull/13979))
* Fix default keymap for GMMK Pro Iso ([#13980](https://github.com/qmk/qmk_firmware/pull/13980))
* Fixup Ungodly Launch Pad config ([#13992](https://github.com/qmk/qmk_firmware/pull/13992))
* Fix errors that have cropped up in develop ([#14005](https://github.com/qmk/qmk_firmware/pull/14005))
* Fix wait_us overflow in matrix for dactyl based boards ([#14039](https://github.com/qmk/qmk_firmware/pull/14039))
* Fixup Neson Design N6 ISSI includes ([#14045](https://github.com/qmk/qmk_firmware/pull/14045))
* Fixup `massdrop/alt`, `cest73/tkm`. ([#14048](https://github.com/qmk/qmk_firmware/pull/14048))
* fix helix:fraanrosi compile error caused by #13677. ([#14061](https://github.com/qmk/qmk_firmware/pull/14061))
* Fix compile issues for Tractyl Manuform ([#14105](https://github.com/qmk/qmk_firmware/pull/14105))
* Disable Console on Keebio Quefrency ([#14108](https://github.com/qmk/qmk_firmware/pull/14108))
* Fixed GMMK Pro -> stickandgum keymap readme.md ([#14123](https://github.com/qmk/qmk_firmware/pull/14123))
* Drashna keymap fixups ([#14140](https://github.com/qmk/qmk_firmware/pull/14140))
* fix ([#14142](https://github.com/qmk/qmk_firmware/pull/14142))
* Fix merge artifacts ([#14146](https://github.com/qmk/qmk_firmware/pull/14146))
* Update readme files ([#14172](https://github.com/qmk/qmk_firmware/pull/14172))
Others:
* Add examples to RGB Matrix Indicators docs ([#12797](https://github.com/qmk/qmk_firmware/pull/12797))
Bugs:
* Fix Indicator LED issues ([#12097](https://github.com/qmk/qmk_firmware/pull/12097))
* Fixing incorrect keymap build when switching between multiple keymap.jsons ([#12632](https://github.com/qmk/qmk_firmware/pull/12632))
* Fix LED Hit Counter for LED/RGB Matrix ([#12674](https://github.com/qmk/qmk_firmware/pull/12674))
* ChibiOS fix O3 and LTO breakage of extra keys and joystick ([#12819](https://github.com/qmk/qmk_firmware/pull/12819))
* Remove the #10088 hotfix for Teensy 3.1-like Input:Club keyboards ([#12870](https://github.com/qmk/qmk_firmware/pull/12870))
* Fix firmware size check with avr-libc 1:2.0.0+Atmel3.6.2-1.1 (Debian bullseye) ([#12951](https://github.com/qmk/qmk_firmware/pull/12951))
* Fix RGB/LED Suspend defines ([#13146](https://github.com/qmk/qmk_firmware/pull/13146))
* Fix overrun in st7565_write_raw when not at (0, 0) ([#13209](https://github.com/qmk/qmk_firmware/pull/13209))
* Upgrades Vagrant box to Debian 10 to fix Docker build error on Debian 9. ([#13236](https://github.com/qmk/qmk_firmware/pull/13236))
* Fix issues with VIA EEPROM init and bring in line with eeconfig functionality ([#13243](https://github.com/qmk/qmk_firmware/pull/13243))
* Fix CRC for AVR and enable again. ([#13253](https://github.com/qmk/qmk_firmware/pull/13253))
* Fix linker error when rgblight and RGB Matrix are both enabled ([#13304](https://github.com/qmk/qmk_firmware/pull/13304))
* Fix building layouts from JSON ([#13310](https://github.com/qmk/qmk_firmware/pull/13310))
* Add rgblight to RGB Matrix VPATH ([#13371](https://github.com/qmk/qmk_firmware/pull/13371))
* Fix two out of bounds accesses from #13330. ([#13525](https://github.com/qmk/qmk_firmware/pull/13525))
* Fixes for clang not being able to run unit tests ([#13546](https://github.com/qmk/qmk_firmware/pull/13546))
* Fixup Audio startup and add to documents ([#13606](https://github.com/qmk/qmk_firmware/pull/13606))
* CLI/Docs: Fix the format commands' name ([#13668](https://github.com/qmk/qmk_firmware/pull/13668))
* Disables rgblight twinkle by default. ([#13677](https://github.com/qmk/qmk_firmware/pull/13677))
* Fix typo in dip switch example ([#13688](https://github.com/qmk/qmk_firmware/pull/13688))
* docs/cli_commands: fix typo ([#13697](https://github.com/qmk/qmk_firmware/pull/13697))
* Include gpio.h in solenoid driver for GPIO Control functions ([#13716](https://github.com/qmk/qmk_firmware/pull/13716))
* Fix pimoroni trackball read address ([#13810](https://github.com/qmk/qmk_firmware/pull/13810))
* Fix Key Override includes ([#13831](https://github.com/qmk/qmk_firmware/pull/13831))
* Fix alignment of USB out report buffer 2 -> 4 ([#13838](https://github.com/qmk/qmk_firmware/pull/13838))
* Fix compilation issue. ([#13926](https://github.com/qmk/qmk_firmware/pull/13926))
* Fix `combo_disable` ([#13988](https://github.com/qmk/qmk_firmware/pull/13988))
* Fix pmw3360 code to only output debug info if mouse debugging is enabled ([#13993](https://github.com/qmk/qmk_firmware/pull/13993))
* Fix ifdefs for OLED split sync code ([#14017](https://github.com/qmk/qmk_firmware/pull/14017))
* Various fixes from reorg of files ([#14051](https://github.com/qmk/qmk_firmware/pull/14051))
* Fixup atsam builds. ([#14052](https://github.com/qmk/qmk_firmware/pull/14052))
* Fix RGB/LED Matrix Suspend code ([#14084](https://github.com/qmk/qmk_firmware/pull/14084))
* Fix issues with recent keymap.json changes ([#14089](https://github.com/qmk/qmk_firmware/pull/14089))
* Fix LED Matrix suspend code ([#14090](https://github.com/qmk/qmk_firmware/pull/14090))
* Fix up compilation issues. ([#14095](https://github.com/qmk/qmk_firmware/pull/14095))
* Fix copypasta issue with pmw3360 sensor config ([#14106](https://github.com/qmk/qmk_firmware/pull/14106))
* Fix typo ([#14118](https://github.com/qmk/qmk_firmware/pull/14118))
* Fix bootloadHID comments breaking :flash ([#14133](https://github.com/qmk/qmk_firmware/pull/14133))
* Fix Mouse Shared EP functionality ([#14136](https://github.com/qmk/qmk_firmware/pull/14136))
* Short term bodge for firmware size bloat ([#14144](https://github.com/qmk/qmk_firmware/pull/14144))
* Move to correct location ([#14171](https://github.com/qmk/qmk_firmware/pull/14171))

View File

@ -1,457 +0,0 @@
# QMK Breaking Changes - 2021 November 27 Changelog
## 2000 keyboards! :id=qmk-2000th-keyboard
QMK had it's 2000th keyboard submitted during this breaking changes cycle.... and it only _just_ made the cut-off!
```shell
% qmk list-keyboards | wc -l
2003
```
From the whole QMK team, a major thankyou to the community for embracing QMK as your preferred keyboard firmware!
## Notable Features :id=notable-features
### Expanded Pointing Device support ([#14343](https://github.com/qmk/qmk_firmware/pull/14343)) :id=expanded-pointing-device
Pointing device support has been reworked and reimplemented to allow for easier integration of new peripherals.
Usages of `POINTING_DEVICE_ENABLE = yes` in `rules.mk` files now need to be accompanied by a corresponding `POINTING_DEVICE_DRIVER = ???` line, specifying which driver to use during the build. Existing keyboards have already been migrated across to the new usage pattern, so most likely no change is required by users.
QMK now has core-supplied support for the following pointing device peripherals:
| `rules.mk` line | Supported device |
|------------------------------------------------|-----------------------------------------|
| `POINTING_DEVICE_DRIVER = analog_joystick` | Analog joysticks, such as PSP joysticks |
| `POINTING_DEVICE_DRIVER = adns5050` | ADNS 5050 sensor |
| `POINTING_DEVICE_DRIVER = adns9800` | ADNS 9800 laser sensor |
| `POINTING_DEVICE_DRIVER = cirque_pinnacle_i2c` | Cirque touchpad, I2C mode |
| `POINTING_DEVICE_DRIVER = cirque_pinnacle_spi` | Cirque Touchpad, SPI mode |
| `POINTING_DEVICE_DRIVER = pimoroni_trackball` | Pimoroni Trackball |
| `POINTING_DEVICE_DRIVER = pmw3360` | PMW 3360 |
See the new documentation for the [Pointing Device](../feature_pointing_device.md) feature for more information on specific configuration for each driver.
### Dynamic Tapping Term ([#11036](https://github.com/qmk/qmk_firmware/pull/11036)) :id=dynamic-tapping-term
For people who are starting out with tapping keys, or for people who think tapping keys don't "feel right", it's sometimes quite difficult to determine what duration of tapping term to use to make things seem natural.
If you're in this stage of discovery, you can now add `DYNAMIC_TAPPING_TERM_ENABLE = yes` to your `rules.mk`, which enables the use of the following keycodes in your keymap:
| Key | Description |
|-----------|-------------------------------------------------------------------------------|
| `DT_PRNT` | "Dynamic Tapping Term Print": Types the current tapping term, in milliseconds |
| `DT_UP` | "Dynamic Tapping Term Up": Increases the current tapping term by 5ms |
| `DT_DOWN` | "Dynamic Tapping Term Down": Decreases the current tapping term by 5ms |
Coupled with the use of `qmk console` or QMK Toolbox to show console output from your keyboard, you can tweak the tapping term dynamically in order to narrow down what "feels right" to you. Once you're happy, drop in the resulting number into your keymap's `config.h` and you're good to go!
### Macros in JSON keymaps ([#14374](https://github.com/qmk/qmk_firmware/pull/14374)) :id=macros-in-keymap-json
You can now define up to 32 macros in your `keymap.json` file, as used by [QMK Configurator](newbs_building_firmware_configurator.md), and `qmk compile`. You can define these macros in a list under the `macros` keyword, like this:
```json
{
"keyboard": "handwired/my_macropad",
"keymap": "my_keymap",
"macros": [
[ // first listed is MACRO_0...
{"action":"down", "keycodes": ["LSFT"]},
"hello world1",
{"action": "up","keycodes": ["LSFT"]}
],
[ // ...then MACRO_1...
{"action":"tap", "keycodes": ["LCTL", "LALT", "DEL"]}
],
[ // ...then MACRO_2...
"ding!",
{"action":"beep"}
],
[ // ...and MACRO_3.
{"action":"tap", "keycodes": ["F1"]},
{"action":"delay", "duration": "1000"},
{"action":"tap", "keycodes": ["PGDN"]}
]
],
"layout": "LAYOUT_all",
"layers": [
["MACRO_0", "MACRO_1", "MACRO_2", "MACRO_3"]
]
}
```
In due course, [QMK Configurator](https://config.qmk.fm/) will pick up support for defining these in its UI, but for now the json is the only way to define macros.
## Changes Requiring User Action :id=changes-requiring-user-action
### Updated Keyboard Codebases :id=updated-keyboard-codebases
The following keyboards have had their source moved within QMK:
| Old Keyboard Name | New Keyboard Name |
|------------------------|---------------------------------|
| aozora/hotswap | aozora |
| gskt00 | kapcave/gskt00 |
| handwired/dtisaac01 | dtisaac/dtisaac01 |
| kprepublic/bm60poker | kprepublic/bm60hsrgb_poker/rev1 |
| kprepublic/bm60rgb | kprepublic/bm60hsrgb/rev1 |
| kprepublic/bm60rgb_iso | kprepublic/bm60hsrgb_iso/rev1 |
| kprepublic/bm65iso | kprepublic/bm65hsrgb_iso |
| kprepublic/bm68rgb | kprepublic/bm68hsrgb |
| paladin64 | kapcave/paladin64 |
| portal_66 | portal_66/soldered |
| signum/3_0/elitec | signum/3_0 |
| tgr/jane | tgr/jane/v2 |
### Squeezing space out of AVR ([#15243](https://github.com/qmk/qmk_firmware/pull/15243)) :id=squeezing-space-from-avr
The AVR platform has been problematic for some time, in the sense that it is severely resource-constrained -- this makes life difficult for anyone attempting to add new functionality such as display panels to their keymap code. The illustrious Drashna has contributed some newer documentation on how to attempt to free up some space on AVR-based keyboards that are in short supply.
Of course, there are much fewer constraints with ARM chips... ;)
### Require explicit enabling of RGB Matrix modes ([#15018](https://github.com/qmk/qmk_firmware/pull/15018)) :id=explicit-rgb-modes
Related to the previous section -- RGB Matrix modes have now been made to be opt-in, rather than opt-out. As these animations are now opt-in, you may find that your keyboard no longer has all the RGB modes you're expecting -- you may need to configure and recompile your firmware and enable your animations of choice... with any luck they'll still fit in the space available.
Most keyboards keep their original functionality, but over time the QMK maintainers have found that removal of animations ends up being the quickest way to free up space... and some keyboards have had animations such as reactive effects disabled by default in order to still fit within the flash space available.
The full list of configurables to turn specific animations back on can be found at on the [RGB Matrix documentation](feature_rgb_matrix.md#rgb-matrix-effects) page.
### OLED task refactoring ([#14864](https://github.com/qmk/qmk_firmware/pull/14864)) :id=oled-task-refactor
OLED display code was traditionally difficult to override in keymaps as they did not follow the standard pattern of `bool *_kb()` deferring to `bool *_user()` functions, allowing signalling to the higher level that processing had already been done.
This changes the standard OLED drawing function model to allow for a base implementation to be provided by a keyboard, but also still allow for keymap-level overrides without needing to modify the keyboard's code.
The old keymap code went something like this:
```c
void oled_task_user(void) {
// keymap drawing code
}
```
...but the new keymap code looks like this:
```c
bool oled_task_user(void) {
// keymap drawing code
return false;
}
```
Keyboard designers should now structure their keyboard-level drawing routines like the following, in order to allow for keymap overrides:
```c
bool oled_task_kb(void) {
// Defer to the keymap if they want to override
if(!oled_task_user()) { return false; }
// default keyboard drawing code
return false;
}
```
### Bootmagic Full Removal ([#15002](https://github.com/qmk/qmk_firmware/pull/15002)) :id=bootmagic-full-removal
As noted during previous breaking changes cycles, QMK decided to deprecate the full Bootmagic feature and leave Bootmagic Lite as the only remaining option.
This removal is now complete!
This pull request changes the behavior of `BOOTMAGIC_ENABLE` such that specifying `lite` or `full` results in an error, allowing only `yes` or `no`, with `yes` mirroring historical `lite` functionality.
All use of the `lite` keyword within the repository has been migrated to `yes` -- any new submissions using `lite` will now fail to build and should be updated accordingly.
#### Bootmagic Full Deprecation Schedule: Complete!
This is the historical timeline for the behavior of `BOOTMAGIC_ENABLE`:
- (done) From 2021 May 29, setting `BOOTMAGIC_ENABLE = yes` will enable Bootmagic Lite instead of full Bootmagic.
- (done) From 2021 Aug 28, `BOOTMAGIC_ENABLE` must be either `yes`, `lite`, or `no` setting `BOOTMAGIC_ENABLE = full` will cause compilation to fail.
- (now) From 2021 Nov 27, `BOOTMAGIC_ENABLE` must be either `yes` or `no` setting `BOOTMAGIC_ENABLE = lite` will cause compilation to fail.
### Remove QWIIC_DRIVERS ([#14174](https://github.com/qmk/qmk_firmware/pull/14174)) :id=remove-qwiic
Due to minimal QWIIC adoption and other options for similar functionality, the QWIIC drivers were removed from QMK. Existing OLED usages have been migrated across to the normal QMK OLED driver instead.
## Notable core changes :id=notable-core
### New MCU Support :id=new-mcu-support
QMK firmware picked up support for a handful of new MCU families, potentially making it a bit easier to source components.
QMK firmware is now no longer limited to AVR and ARM - it also picked up support for our first RISC-V chip, the GD32VF103.
* Add support for RISC-V builds and GD32VF103 MCU ([#12508](https://github.com/qmk/qmk_firmware/pull/12508))
* Add HT32 support to core ([#14388](https://github.com/qmk/qmk_firmware/pull/14388))
* Westberrytech pr ([#14422](https://github.com/qmk/qmk_firmware/pull/14422))
* Initial pass of F405 support ([#14584](https://github.com/qmk/qmk_firmware/pull/14584))
### EEPROM Changes :id=eeprom-changes
There were a few EEPROM-related changes that landed during this breaking changes cycle, most prominently the long-awaited ability for the Drop boards to gain persistent storage. Any users of the Drop CTRL or Drop ALT should update QMK Toolbox as well -- coupled with a QMK firmware update settings should now be saved.
* massdrop alt/ctrl: support saving into nvm ([#6068](https://github.com/qmk/qmk_firmware/pull/6068))
* Implement F4 eeprom ([#14195](https://github.com/qmk/qmk_firmware/pull/14195))
* make the full 4096 bytes of EEPROM work on Teensy 3.6 ([#12947](https://github.com/qmk/qmk_firmware/pull/12947))
* Further tidy up of STM32 eeprom emulation ([#14591](https://github.com/qmk/qmk_firmware/pull/14591))
* Enable eeprom with F401xE ld ([#14752](https://github.com/qmk/qmk_firmware/pull/14752))
### Compilation Database :id=compile-commands
A clang-compatible compilation database generator has been added as an option in order to help development environments such as Visual Studio Code.
Running `qmk generate-compilation-database -kb <yourkb> -km <yourkeymap>` from within the QMK firmware directory will generate a `compile_commands.json` file -- using a compatible IDE will likely see this and correctly start detecting the correct locations for source files as well as type and function information that are relevant to your build.
Do note that switching keyboards will require re-generation of this file.
* New CLI subcommand to create clang-compatible compilation database (`compile_commands.json`) ([#14370](https://github.com/qmk/qmk_firmware/pull/14370))
* compiledb: query include paths from gcc directly. ([#14462](https://github.com/qmk/qmk_firmware/pull/14462))
### Codebase restructure and cleanup :id=codebase-restructure
QMK continues on its restructuring journey, in order to make it easier to integrate newer features and add support for new hardware. This quarter's batch of changes include:
* add 'include keyboard_features.mk' into build_keyboard.mk ([#8422](https://github.com/qmk/qmk_firmware/pull/8422))
* Infer more when building features ([#13890](https://github.com/qmk/qmk_firmware/pull/13890))
* Move `tmk_core/common/<plat>` ([#13918](https://github.com/qmk/qmk_firmware/pull/13918))
* Move feature suspend logic out of platform specific code ([#14210](https://github.com/qmk/qmk_firmware/pull/14210))
* Remove bin/qmk ([#14231](https://github.com/qmk/qmk_firmware/pull/14231))
* Move Audio drivers from quantum to platform drivers folder ([#14308](https://github.com/qmk/qmk_firmware/pull/14308))
* Remove Arduino-style `analogRead()` ([#14348](https://github.com/qmk/qmk_firmware/pull/14348))
* Remove unreferenced IBM4704, Sony NEWS, NeXT keyboard code. ([#14380](https://github.com/qmk/qmk_firmware/pull/14380))
* Move Bluetooth config to common_features.mk ([#14404](https://github.com/qmk/qmk_firmware/pull/14404))
* Relocate Adafruit BLE code ([#14530](https://github.com/qmk/qmk_firmware/pull/14530))
* Change `MK66F18` -> `MK66FX1M0` ([#14659](https://github.com/qmk/qmk_firmware/pull/14659))
* Remove sysex API ([#14723](https://github.com/qmk/qmk_firmware/pull/14723))
* Basic keycode overhaul ([#14726](https://github.com/qmk/qmk_firmware/pull/14726))
* Remove SERIAL_LINK feature ([#14727](https://github.com/qmk/qmk_firmware/pull/14727))
* Move converter specific tmk_core protocols ([#14743](https://github.com/qmk/qmk_firmware/pull/14743))
* Align PS/2 GPIO defines ([#14745](https://github.com/qmk/qmk_firmware/pull/14745))
* Clean up LED/RGB Matrix driver config ([#14760](https://github.com/qmk/qmk_firmware/pull/14760))
* Update UART driver API ([#14839](https://github.com/qmk/qmk_firmware/pull/14839))
* Tidy up LCD_ENABLE/visualizer references ([#14855](https://github.com/qmk/qmk_firmware/pull/14855))
* Remove legacy Makefile functionality ([#14858](https://github.com/qmk/qmk_firmware/pull/14858))
* Begin to carve out platform/protocol API - Migrate keyboard_* calls ([#14888](https://github.com/qmk/qmk_firmware/pull/14888))
* Rename platform SRC variable ([#14894](https://github.com/qmk/qmk_firmware/pull/14894))
* Relocate PS2 code ([#14895](https://github.com/qmk/qmk_firmware/pull/14895))
* Move USE_CCACHE logic to common location ([#14899](https://github.com/qmk/qmk_firmware/pull/14899))
* Migrate makefile utilities to sub-directory ([#14917](https://github.com/qmk/qmk_firmware/pull/14917))
* Remove SERIAL_MOUSE ([#14969](https://github.com/qmk/qmk_firmware/pull/14969))
* Relocate protocol files within tmk_core/common/ ([#14972](https://github.com/qmk/qmk_firmware/pull/14972))
* More platform/protocol alignment ([#14976](https://github.com/qmk/qmk_firmware/pull/14976))
* Fix uart function prototypes ([#15162](https://github.com/qmk/qmk_firmware/pull/15162))
* Remove deprecated KEYMAP alias ([#15037](https://github.com/qmk/qmk_firmware/pull/15037))
* Move non-assignment code to post_rules.mk ([#14207](https://github.com/qmk/qmk_firmware/pull/14207))
* Helix use `post_rules.mk` ([#14216](https://github.com/qmk/qmk_firmware/pull/14216))
* Make ChibiOS PAL interactions less STM32 specific - Round 2 ([#14456](https://github.com/qmk/qmk_firmware/pull/14456))
---
## Full changelist
Core:
* massdrop alt/ctrl: support saving into nvm ([#6068](https://github.com/qmk/qmk_firmware/pull/6068))
* Made AVR backlight pwm resolution configurable ([#7521](https://github.com/qmk/qmk_firmware/pull/7521))
* add 'include keyboard_features.mk' into build_keyboard.mk ([#8422](https://github.com/qmk/qmk_firmware/pull/8422))
* New feature: `DYNAMIC_TAPPING_TERM_ENABLE` ([#11036](https://github.com/qmk/qmk_firmware/pull/11036))
* Add Retro Shift (Auto Shift for Tap Hold via Retro Tapping) and Custom Auto Shifts ([#11059](https://github.com/qmk/qmk_firmware/pull/11059))
* Add support for RISC-V builds and GD32VF103 MCU ([#12508](https://github.com/qmk/qmk_firmware/pull/12508))
* Add Fractal RGB matrix effects ([#12670](https://github.com/qmk/qmk_firmware/pull/12670))
* Added power tracking api ([#12691](https://github.com/qmk/qmk_firmware/pull/12691))
* haptic: Feature to disable it when usb port is not configured or suspended. ([#12692](https://github.com/qmk/qmk_firmware/pull/12692))
* make the full 4096 bytes of EEPROM work on Teensy 3.6 ([#12947](https://github.com/qmk/qmk_firmware/pull/12947))
* Add Support for USB programmable buttons ([#12950](https://github.com/qmk/qmk_firmware/pull/12950))
* [Tests] Increase QMK test coverage ([#13789](https://github.com/qmk/qmk_firmware/pull/13789))
* Add support for ISSI drivers on both sides of a split keyboard ([#13842](https://github.com/qmk/qmk_firmware/pull/13842))
* Infer more when building features ([#13890](https://github.com/qmk/qmk_firmware/pull/13890))
* Reimplements WPM feature to be smaller & precise ([#13902](https://github.com/qmk/qmk_firmware/pull/13902))
* Move `tmk_core/common/<plat>` ([#13918](https://github.com/qmk/qmk_firmware/pull/13918))
* Improvements to handling of disconnected split keyboards. ([#14033](https://github.com/qmk/qmk_firmware/pull/14033))
* Add Pixel Rain RGB Matrix effect ([#14155](https://github.com/qmk/qmk_firmware/pull/14155))
* Remove QWIIC_DRIVERS ([#14174](https://github.com/qmk/qmk_firmware/pull/14174))
* Add LM() keys to the list of keys disabled by NO_HAPTIC_MOD ([#14181](https://github.com/qmk/qmk_firmware/pull/14181))
* Implement F4 eeprom ([#14195](https://github.com/qmk/qmk_firmware/pull/14195))
* define to AUTO_SHIFT_DISABLED_AT_STARTUP ([#14201](https://github.com/qmk/qmk_firmware/pull/14201))
* Move feature suspend logic out of platform specific code ([#14210](https://github.com/qmk/qmk_firmware/pull/14210))
* Remove bin/qmk ([#14231](https://github.com/qmk/qmk_firmware/pull/14231))
* Change keyboard level include guards to `pragma once` ([#14248](https://github.com/qmk/qmk_firmware/pull/14248))
* i2c_master: Add support for reading/writing to 16-bit registers ([#14289](https://github.com/qmk/qmk_firmware/pull/14289))
* Move Audio drivers from quantum to platform drivers folder ([#14308](https://github.com/qmk/qmk_firmware/pull/14308))
* Add RGBW support to PWM and SPI drivers for ChibiOS ([#14327](https://github.com/qmk/qmk_firmware/pull/14327))
* Rework and expand Pointing Device support ([#14343](https://github.com/qmk/qmk_firmware/pull/14343))
* Remove Arduino-style `analogRead()` ([#14348](https://github.com/qmk/qmk_firmware/pull/14348))
* Macros in JSON keymaps ([#14374](https://github.com/qmk/qmk_firmware/pull/14374))
* Remove unreferenced IBM4704, Sony NEWS, NeXT keyboard code. ([#14380](https://github.com/qmk/qmk_firmware/pull/14380))
* Add HT32 support to core ([#14388](https://github.com/qmk/qmk_firmware/pull/14388))
* Align ChibiOS I2C defs with other drivers ([#14399](https://github.com/qmk/qmk_firmware/pull/14399))
* Move Bluetooth config to common_features.mk ([#14404](https://github.com/qmk/qmk_firmware/pull/14404))
* Westberrytech pr ([#14422](https://github.com/qmk/qmk_firmware/pull/14422))
* Refactor use of STM32_SYSCLK ([#14430](https://github.com/qmk/qmk_firmware/pull/14430))
* Migrate STM32_EEPROM_ENABLE to use EEPROM_DRIVER ([#14433](https://github.com/qmk/qmk_firmware/pull/14433))
* Refactor use of _STM32_ defines ([#14439](https://github.com/qmk/qmk_firmware/pull/14439))
* Add i2c defaults for Convert to Proton C ([#14470](https://github.com/qmk/qmk_firmware/pull/14470))
* Use opendrain pin with external pullup again ([#14474](https://github.com/qmk/qmk_firmware/pull/14474))
* Add ability to use numpad digits for unicode mode UC_WIN ([#14496](https://github.com/qmk/qmk_firmware/pull/14496))
* Enable de-ghosting for RGB/LED matrix on all ISSI LED drivers ([#14508](https://github.com/qmk/qmk_firmware/pull/14508))
* Relocate Adafruit BLE code ([#14530](https://github.com/qmk/qmk_firmware/pull/14530))
* Initial pass of F405 support ([#14584](https://github.com/qmk/qmk_firmware/pull/14584))
* Further tidy up of STM32 eeprom emulation ([#14591](https://github.com/qmk/qmk_firmware/pull/14591))
* Remove GCC version check from song list inclusion ([#14600](https://github.com/qmk/qmk_firmware/pull/14600))
* Change `MK66F18` -> `MK66FX1M0` ([#14659](https://github.com/qmk/qmk_firmware/pull/14659))
* Add ifndef to WS2812 timing constraints ([#14678](https://github.com/qmk/qmk_firmware/pull/14678))
* Reuse of EEPROM debounce logic ([#14699](https://github.com/qmk/qmk_firmware/pull/14699))
* Remove sysex API ([#14723](https://github.com/qmk/qmk_firmware/pull/14723))
* Basic keycode overhaul ([#14726](https://github.com/qmk/qmk_firmware/pull/14726))
* Remove SERIAL_LINK feature ([#14727](https://github.com/qmk/qmk_firmware/pull/14727))
* Enable CLI flashing via mdloader ([#14729](https://github.com/qmk/qmk_firmware/pull/14729))
* Correct the Turkish F '?' keycode (TR_QUES) ([#14740](https://github.com/qmk/qmk_firmware/pull/14740))
* Move converter specific tmk_core protocols ([#14743](https://github.com/qmk/qmk_firmware/pull/14743))
* Align PS/2 GPIO defines ([#14745](https://github.com/qmk/qmk_firmware/pull/14745))
* Improve Adafruit BLE configuration defines ([#14749](https://github.com/qmk/qmk_firmware/pull/14749))
* Enable eeprom with F401xE ld ([#14752](https://github.com/qmk/qmk_firmware/pull/14752))
* Clean up LED/RGB Matrix driver config ([#14760](https://github.com/qmk/qmk_firmware/pull/14760))
* Initial USB2422 driver ([#14835](https://github.com/qmk/qmk_firmware/pull/14835))
* Update UART driver API ([#14839](https://github.com/qmk/qmk_firmware/pull/14839))
* Split out arm_atsam shift register logic ([#14848](https://github.com/qmk/qmk_firmware/pull/14848))
* Split out HAPTIC_ENABLE to have separate DRIVER option ([#14854](https://github.com/qmk/qmk_firmware/pull/14854))
* Tidy up LCD_ENABLE/visualizer references ([#14855](https://github.com/qmk/qmk_firmware/pull/14855))
* Remove legacy Makefile functionality ([#14858](https://github.com/qmk/qmk_firmware/pull/14858))
* Add support for deferred executors. ([#14859](https://github.com/qmk/qmk_firmware/pull/14859))
* Change OLED task function to be boolean ([#14864](https://github.com/qmk/qmk_firmware/pull/14864))
* Add a new led driver for Keychron's keyboards. ([#14872](https://github.com/qmk/qmk_firmware/pull/14872))
* Begin to carve out platform/protocol API - Migrate keyboard_* calls ([#14888](https://github.com/qmk/qmk_firmware/pull/14888))
* Rename platform SRC variable ([#14894](https://github.com/qmk/qmk_firmware/pull/14894))
* Relocate PS2 code ([#14895](https://github.com/qmk/qmk_firmware/pull/14895))
* Move USE_CCACHE logic to common location ([#14899](https://github.com/qmk/qmk_firmware/pull/14899))
* Migrate makefile utilities to sub-directory ([#14917](https://github.com/qmk/qmk_firmware/pull/14917))
* Remove legacy handling for ErgoDox Infinity handedness ([#14919](https://github.com/qmk/qmk_firmware/pull/14919))
* Align usbasp flashing behaviour ([#14928](https://github.com/qmk/qmk_firmware/pull/14928))
* Optimize matrix scanning by removing variable shifts ([#14947](https://github.com/qmk/qmk_firmware/pull/14947))
* Stop-gap forward-port Drop LED features for CTRL and ALT ([#14967](https://github.com/qmk/qmk_firmware/pull/14967))
* Remove SERIAL_MOUSE ([#14969](https://github.com/qmk/qmk_firmware/pull/14969))
* Relocate protocol files within tmk_core/common/ ([#14972](https://github.com/qmk/qmk_firmware/pull/14972))
* Move LTO logic from common.mk ([#14973](https://github.com/qmk/qmk_firmware/pull/14973))
* More platform/protocol alignment ([#14976](https://github.com/qmk/qmk_firmware/pull/14976))
* Add support to persist MD LED framework settings ([#14980](https://github.com/qmk/qmk_firmware/pull/14980))
* Enable configuration of PWM frequency for IS31FL3733B ([#14983](https://github.com/qmk/qmk_firmware/pull/14983))
* Remove `BOOTMAGIC_ENABLE = lite` option ([#15002](https://github.com/qmk/qmk_firmware/pull/15002))
* Manually format develop ([#15003](https://github.com/qmk/qmk_firmware/pull/15003))
* Require explicit enabling of RGB Matrix modes ([#15018](https://github.com/qmk/qmk_firmware/pull/15018))
* Remove deprecated KEYMAP alias ([#15037](https://github.com/qmk/qmk_firmware/pull/15037))
* Fix uart function prototypes ([#15162](https://github.com/qmk/qmk_firmware/pull/15162))
* Rename RGB fractal ([#15174](https://github.com/qmk/qmk_firmware/pull/15174))
* Format code according to conventions ([#15195](https://github.com/qmk/qmk_firmware/pull/15195))
* Format code according to conventions ([#15196](https://github.com/qmk/qmk_firmware/pull/15196))
* Add uint to char functions ([#15244](https://github.com/qmk/qmk_firmware/pull/15244))
* [Tests] Increase QMK test coverage take 2 ([#15269](https://github.com/qmk/qmk_firmware/pull/15269))
* Tidy up adjustable ws2812 timing ([#15299](https://github.com/qmk/qmk_firmware/pull/15299))
* Add script for performing compilation size regression investigations. ([#15303](https://github.com/qmk/qmk_firmware/pull/15303))
* WB32F3G71 config migration with removal of unnecessary items. ([#15309](https://github.com/qmk/qmk_firmware/pull/15309))
* Re-add encoder tests ([#15312](https://github.com/qmk/qmk_firmware/pull/15312))
CLI:
* Add check for non-assignment code in rules.mk ([#12108](https://github.com/qmk/qmk_firmware/pull/12108))
* Export list of `develop` PRs to be merged into `master` ([#13944](https://github.com/qmk/qmk_firmware/pull/13944))
* remove qmk console, which is now part of the global cli ([#14206](https://github.com/qmk/qmk_firmware/pull/14206))
* New CLI subcommand to create clang-compatible compilation database (`compile_commands.json`) ([#14370](https://github.com/qmk/qmk_firmware/pull/14370))
* compiledb: query include paths from gcc directly. ([#14462](https://github.com/qmk/qmk_firmware/pull/14462))
Submodule updates:
* Update to ChibiOS 20.3.4, support builds against trunk ([#14208](https://github.com/qmk/qmk_firmware/pull/14208))
* Update ChibiOS-Contrib ([#14408](https://github.com/qmk/qmk_firmware/pull/14408))
* Update ChibiOS-Contrib ([#14419](https://github.com/qmk/qmk_firmware/pull/14419))
* Purge uGFX. ([#14720](https://github.com/qmk/qmk_firmware/pull/14720))
Keyboards:
* Add support for PaladinPad, Arya pcb and move keyboards by KapCave into their own directory ([#14194](https://github.com/qmk/qmk_firmware/pull/14194))
* Move non-assignment code to post_rules.mk ([#14207](https://github.com/qmk/qmk_firmware/pull/14207))
* Helix use `post_rules.mk` ([#14216](https://github.com/qmk/qmk_firmware/pull/14216))
* handwired/symmetric70_proto use post_rules.mk ([#14235](https://github.com/qmk/qmk_firmware/pull/14235))
* Add Adelais PCB. Adelais RGB rev.3, Adelais rev. 4 APM32F103, Adelais AVR rev. 1 ([#14252](https://github.com/qmk/qmk_firmware/pull/14252))
* GMMK Pro keymap ([#14389](https://github.com/qmk/qmk_firmware/pull/14389))
* Migrate boston_meetup/2019 away from QWIIC_DRIVERS ([#14413](https://github.com/qmk/qmk_firmware/pull/14413))
* Migrate hadron away from QWIIC_DRIVERS ([#14415](https://github.com/qmk/qmk_firmware/pull/14415))
* Enable Proton C defaults for SplitKB Kyria ([#14490](https://github.com/qmk/qmk_firmware/pull/14490))
* Set USB max power consumption of kint* controllers to 100mA ([#14546](https://github.com/qmk/qmk_firmware/pull/14546))
* Remove complex `fn_actions` macros ([#14662](https://github.com/qmk/qmk_firmware/pull/14662))
* New Keyboard: TGR Jane CE ([#14713](https://github.com/qmk/qmk_firmware/pull/14713))
* Migrate satisfaction75 away from QWIIC_DRIVERS ([#14747](https://github.com/qmk/qmk_firmware/pull/14747))
* add Lefty keyboard ([#14898](https://github.com/qmk/qmk_firmware/pull/14898))
* overnumpad controller: Add support for turning off solenoid enable in low power. ([#15021](https://github.com/qmk/qmk_firmware/pull/15021))
* Reduce compile size for melgeek mach80 ([#15034](https://github.com/qmk/qmk_firmware/pull/15034))
* Update updated KPrepublic boards to be prepared for the update ([#15040](https://github.com/qmk/qmk_firmware/pull/15040))
* rename kprepublic bm keyboards to have a standardized naming format ([#15047](https://github.com/qmk/qmk_firmware/pull/15047))
* matrix/abelx - Update ChibiOS conf files ([#15130](https://github.com/qmk/qmk_firmware/pull/15130))
* Disable console on Keebio foldkb and iris rev3 ([#15260](https://github.com/qmk/qmk_firmware/pull/15260))
* Disable console on Sofle default keymap ([#15261](https://github.com/qmk/qmk_firmware/pull/15261))
* Disable features on SplitKB boards to fit under size ([#15262](https://github.com/qmk/qmk_firmware/pull/15262))
* Enable LTO on viktus/sp_mini via keymap ([#15263](https://github.com/qmk/qmk_firmware/pull/15263))
Keyboard fixes:
* Fix number of elements in info.json does not match errors ([#14213](https://github.com/qmk/qmk_firmware/pull/14213))
* Fix typos from 14248 ([#14261](https://github.com/qmk/qmk_firmware/pull/14261))
* Stream cheap via fixes/updates ([#14325](https://github.com/qmk/qmk_firmware/pull/14325))
* Map `PRODUCT` define to `keyboard_name` ([#14372](https://github.com/qmk/qmk_firmware/pull/14372))
* Fix BT rules for dosa40rgb ([#14497](https://github.com/qmk/qmk_firmware/pull/14497))
* Fix typo in mechloving adelais header files ([#14590](https://github.com/qmk/qmk_firmware/pull/14590))
* Fix for mechlovin/adelais/standard_led/arm/rev4 ([#14639](https://github.com/qmk/qmk_firmware/pull/14639))
* Fix OLED timeout on recent qwiic migrations ([#14775](https://github.com/qmk/qmk_firmware/pull/14775))
* Fix OLED timeout on satisfaction75 after migration from QWIIC ([#14780](https://github.com/qmk/qmk_firmware/pull/14780))
* Fix Compile issues for lefty ([#14982](https://github.com/qmk/qmk_firmware/pull/14982))
* Fix missing return for oled task on Lefty ([#15010](https://github.com/qmk/qmk_firmware/pull/15010))
* Fix missing return for oled task on Arabica37 ([#15011](https://github.com/qmk/qmk_firmware/pull/15011))
* Fix missing return for oled task in drashna userspace ([#15012](https://github.com/qmk/qmk_firmware/pull/15012))
* Fix size issues on pistachio pro via keymap ([#15017](https://github.com/qmk/qmk_firmware/pull/15017))
* Fix keycode collision in craftwalk keymap ([#15055](https://github.com/qmk/qmk_firmware/pull/15055))
* Fix compilation issues for yanghu Unicorne ([#15068](https://github.com/qmk/qmk_firmware/pull/15068))
* Fixup broken build after #15040 ([#15073](https://github.com/qmk/qmk_firmware/pull/15073))
* Fix compilation issues for Lime ([#15116](https://github.com/qmk/qmk_firmware/pull/15116))
* Fix additional board sizes for RGB Matrix ([#15170](https://github.com/qmk/qmk_firmware/pull/15170))
* Fix bandominedoni via keymap compilation ([#15171](https://github.com/qmk/qmk_firmware/pull/15171))
* Fix handful of boards compiling too large due to RGB matrix changes ([#15184](https://github.com/qmk/qmk_firmware/pull/15184))
* Fix oled_task_user for ffkeebs/puca ([#15185](https://github.com/qmk/qmk_firmware/pull/15185))
* More headroom. ([#15301](https://github.com/qmk/qmk_firmware/pull/15301))
* More headroom. ([#15302](https://github.com/qmk/qmk_firmware/pull/15302))
Others:
* Clean up some code block languages ([#14434](https://github.com/qmk/qmk_firmware/pull/14434))
* Clarify "nested" and "rolling" key sequences ([#14655](https://github.com/qmk/qmk_firmware/pull/14655))
* CI: Create GitHub Actions unit test workflow ([#15223](https://github.com/qmk/qmk_firmware/pull/15223))
* Squeezing space out of AVR ([#15243](https://github.com/qmk/qmk_firmware/pull/15243))
Bugs:
* Fix parallel builds w/ LTO on systems where make is not GNU make. ([#13955](https://github.com/qmk/qmk_firmware/pull/13955))
* fix automatic directory for qmk lint ([#14215](https://github.com/qmk/qmk_firmware/pull/14215))
* RN42 Bluetooth typo fix ([#14421](https://github.com/qmk/qmk_firmware/pull/14421))
* fix typo in backlight code from #14439 ([#14442](https://github.com/qmk/qmk_firmware/pull/14442))
* fix compilation issues with USB programmable buttons ([#14454](https://github.com/qmk/qmk_firmware/pull/14454))
* Fix descriptor for USB Programmable Buttons ([#14455](https://github.com/qmk/qmk_firmware/pull/14455))
* Make ChibiOS PAL interactions less STM32 specific - Round 2 ([#14456](https://github.com/qmk/qmk_firmware/pull/14456))
* fix logical minimum in Programmable Button rdesc ([#14464](https://github.com/qmk/qmk_firmware/pull/14464))
* Fix i2c_readReg16 ([#14730](https://github.com/qmk/qmk_firmware/pull/14730))
* Put back eeconfig_update_ functions ([#14751](https://github.com/qmk/qmk_firmware/pull/14751))
* Fix misplaced endif in led_matrix_drivers.c ([#14785](https://github.com/qmk/qmk_firmware/pull/14785))
* Fix builds for ChibiOS + Cortex-M0[+] ([#14879](https://github.com/qmk/qmk_firmware/pull/14879))
* Fix ccache default ([#14906](https://github.com/qmk/qmk_firmware/pull/14906))
* Fix issues with Oneshot disabling ([#14934](https://github.com/qmk/qmk_firmware/pull/14934))
* Fix develop after recent changes ([#14975](https://github.com/qmk/qmk_firmware/pull/14975))
* Fix up issues shown by clang-format of vusb ([#15004](https://github.com/qmk/qmk_firmware/pull/15004))
* Fix unterminated ifdef in ISSI 3733 driver ([#15014](https://github.com/qmk/qmk_firmware/pull/15014))
* Fix build failures caused by #12947. ([#15019](https://github.com/qmk/qmk_firmware/pull/15019))
* Fixup LED matrix. ([#15020](https://github.com/qmk/qmk_firmware/pull/15020))
* Revert to old init order for host driver ([#15029](https://github.com/qmk/qmk_firmware/pull/15029))
* Fixup #15029 ([#15031](https://github.com/qmk/qmk_firmware/pull/15031))
* RISC-V toolchain and picolibc fixes ([#15109](https://github.com/qmk/qmk_firmware/pull/15109))
* gcc10 LTO - Only specify adhlns assembler options at link time ([#15115](https://github.com/qmk/qmk_firmware/pull/15115))
* Add needed include to pointing_device.c ([#15167](https://github.com/qmk/qmk_firmware/pull/15167))
* Fix missing variable for Backlight Breathing ([#15199](https://github.com/qmk/qmk_firmware/pull/15199))
* Revert backlight pins on function call ([#15205](https://github.com/qmk/qmk_firmware/pull/15205))
* Fix timer include in override_wiring.c ([#15221](https://github.com/qmk/qmk_firmware/pull/15221))
* fix broken macro in transport.h ([#15239](https://github.com/qmk/qmk_firmware/pull/15239))
* Short term bodge for PRODUCT warning ([#15240](https://github.com/qmk/qmk_firmware/pull/15240))
* Remove use of __flash due to LTO issues ([#15268](https://github.com/qmk/qmk_firmware/pull/15268))
* Documentation typo fix ([#15298](https://github.com/qmk/qmk_firmware/pull/15298))
* [Core] Hotfix for HOLD_ON_OTHER_KEY_PRESS after #11059 ([#15307](https://github.com/qmk/qmk_firmware/pull/15307))
* Fix call to pointing_device_handle_buttons ([#15313](https://github.com/qmk/qmk_firmware/pull/15313))
* [Develop] Fix ploopy readme typos ([#15316](https://github.com/qmk/qmk_firmware/pull/15316))

View File

@ -1,489 +0,0 @@
# QMK Breaking Changes - 2022 February 26 Changelog
## Notable Features :id=notable-features
### Default USB Polling rate now 1kHz ([#15352](https://github.com/qmk/qmk_firmware/pull/15352))
The default USB Polling rate has been aligned across supported platforms to now be 1ms/1kHz.
Something something *Lets go gamers!*
### Split support for pointing devices ([#15304](https://github.com/qmk/qmk_firmware/pull/15304))
Pointing devices can now be shared across a split keyboard with support for a single pointing device or a pointing device on each side.
See the [Pointing Device](feature_pointing_device.md) documentation for further configuration options.
## Changes Requiring User Action :id=changes-requiring-user-action
### Legacy macro and action_function system removed ([#16025](https://github.com/qmk/qmk_firmware/pull/16025))
The long time deprecated `MACRO()` and `action_get_macro` methods have been removed. Where possible, existing usages have been migrated over to core [Macros](feature_macros.md).
### Create a build error if no bootloader is specified ([#16181](https://github.com/qmk/qmk_firmware/pull/16181))
Bootloader configuration is no longer assumed. Keyboards must now set either:
* `BOOTLOADER` within `rules.mk`
* `bootloader` within `info.json`
### Rename `AdafruitBLE` to `BluefruitLE` ([#16127](https://github.com/qmk/qmk_firmware/pull/16127))
In preparation of future bluetooth work, the `AdafruitBLE` integration has been renamed to allow potential for any other Adafruit BLE products.
### Updated Keyboard Codebases :id=updated-keyboard-codebases
The following keyboards have had their source moved within QMK:
| Old Keyboard Name | New Keyboard Name |
|----------------------------|------------------------------------|
| 6ball | maple_computing/6ball |
| 7skb | salicylic_acid3/7skb |
| 7splus | salicylic_acid3/7splus |
| acr60 | mechkeys/acr60 |
| adalyn | tominabox1/adalyn |
| ajisai74 | salicylic_acid3/ajisai74 |
| aleth42 | 25keys/aleth42 |
| alicia_cook | ibnuda/alicia_cook |
| allison_numpad | prototypist/allison_numpad |
| allison | prototypist/allison |
| alu84 | mechkeys/alu84 |
| angel17 | kakunpc/angel17 |
| angel64/alpha | kakunpc/angel64/alpha |
| angel64/rev1 | kakunpc/angel64/rev1 |
| arch_36 | obosob/arch_36 |
| bakeneko60 | kkatano/bakeneko60 |
| bakeneko65/rev2 | kkatano/bakeneko65/rev2 |
| bakeneko65/rev3 | kkatano/bakeneko65/rev3 |
| bakeneko80 | kkatano/bakeneko80 |
| barleycorn | yiancardesigns/barleycorn |
| bat43/rev1 | dailycraft/bat43/rev1 |
| bat43/rev2 | dailycraft/bat43/rev2 |
| bigseries/1key | woodkeys/bigseries/1key |
| bigseries/2key | woodkeys/bigseries/2key |
| bigseries/3key | woodkeys/bigseries/3key |
| bigseries/4key | woodkeys/bigseries/4key |
| bkf | drhigsby/bkf |
| business_card/alpha | kakunpc/business_card/alpha |
| business_card/beta | kakunpc/business_card/beta |
| butterstick | gboards/butterstick |
| c39 | maple_computing/c39 |
| cassette42 | 25keys/cassette42 |
| chidori | kagizaraya/chidori |
| chili | ydkb/chili |
| chimera_ergo | glenpickle/chimera_ergo |
| chimera_ls | glenpickle/chimera_ls |
| chimera_ortho | glenpickle/chimera_ortho |
| chimera_ortho_plus | glenpickle/chimera_ortho_plus |
| choco60 | recompile_keys/choco60 |
| choc_taro | kakunpc/choc_taro |
| christmas_tree | maple_computing/christmas_tree |
| claw44/rev1 | dailycraft/claw44/rev1 |
| cocoa40 | recompile_keys/cocoa40 |
| comet46 | satt/comet46 |
| cu24 | capsunlocked/cu24 |
| cu75 | capsunlocked/cu75 |
| cu80 | capsunlocked/cu80/v1 |
| delilah | rainkeebs/delilah |
| diverge3 | unikeyboard/diverge3 |
| divergetm2 | unikeyboard/divergetm2 |
| dozen0 | yynmt/dozen0 |
| dubba175 | drhigsby/dubba175 |
| eggman | qpockets/eggman |
| ergo42 | biacco42/ergo42 |
| ergoarrows | salicylic_acid3/ergoarrows |
| ergodash/mini | omkbd/ergodash/mini |
| ergodash/rev1 | omkbd/ergodash/rev1 |
| ergodox_infinity | input_club/ergodox_infinity |
| ergotaco | gboards/ergotaco |
| espectro | mechkeys/espectro |
| felix | unikeyboard/felix |
| four_banger | bpiphany/four_banger |
| freyr | hnahkb/freyr |
| geminate60 | weirdo/geminate60 |
| georgi | gboards/georgi |
| gergo | gboards/gergo |
| getta25 | salicylic_acid3/getta25 |
| gingham | yiancardesigns/gingham |
| gurindam | ibnuda/gurindam |
| halberd | kagizaraya/halberd |
| hecomi/alpha | takashiski/hecomi/alpha |
| hid_liber | bpiphany/hid_liber |
| id67/default_rgb | idobao/id67/default_rgb |
| id67/rgb | idobao/id67/rgb |
| id80 | idobao/id80/v1 |
| id87 | idobao/id87/v1 |
| idobo | idobao/id75/v1 |
| infinity60 | input_club/infinity60 |
| ivy/rev1 | maple_computing/ivy/rev1 |
| jisplit89 | salicylic_acid3/jisplit89 |
| jnao | maple_computing/jnao |
| just60 | ydkb/just60 |
| kagamidget | yynmt/kagamidget |
| kelowna/rgb64 | weirdo/kelowna/rgb64 |
| kprepublic/bm65hsrgb_iso | kprepublic/bm65hsrgb_iso/rev1 |
| kprepublic/bm68hsrgb | kprepublic/bm68hsrgb/rev1 |
| k_type | input_club/k_type |
| latin17rgb | latincompass/latin17rgb |
| latin47ble | latincompass/latin47ble |
| latin60rgb | latincompass/latin60rgb |
| latin64ble | latincompass/latin64ble |
| latin6rgb | latincompass/latin6rgb |
| latinpadble | latincompass/latinpadble |
| latinpad | latincompass/latinpad |
| launchpad/rev1 | maple_computing/launchpad/rev1 |
| lck75 | lyso1/lck75 |
| le_chiffre | tominabox1/le_chiffre |
| lefishe | lyso1/lefishe |
| lets_split_eh/eh | maple_computing/lets_split_eh/eh |
| ls_60 | weirdo/ls_60 |
| m3n3van | matthewdias/m3n3van |
| mechmini/v1 | mechkeys/mechmini/v1 |
| mechmini/v2 | mechkeys/mechmini/v2 |
| meira | woodkeys/meira |
| meishi2 | biacco42/meishi2 |
| meishi | biacco42/meishi |
| minidox/rev1 | maple_computing/minidox/rev1 |
| minim | matthewdias/minim |
| mio | recompile_keys/mio |
| model_v | matthewdias/model_v |
| montex | idobao/montex/v1 |
| nafuda | salicylic_acid3/nafuda |
| naiping/np64 | weirdo/naiping/np64 |
| naiping/nphhkb | weirdo/naiping/nphhkb |
| naiping/npminila | weirdo/naiping/npminila |
| naked48 | salicylic_acid3/naked48 |
| naked60 | salicylic_acid3/naked60 |
| naked64 | salicylic_acid3/naked64 |
| namecard2x4 | takashiski/namecard2x4 |
| nebula12 | spaceholdings/nebula12 |
| nebula68b | spaceholdings/nebula68b |
| nebula68 | spaceholdings/nebula68 |
| niu_mini | kbdfans/niu_mini |
| nk1 | novelkeys/nk1 |
| nk65 | novelkeys/nk65 |
| nk87 | novelkeys/nk87 |
| nknl7en | salicylic_acid3/nknl7en |
| nknl7jp | salicylic_acid3/nknl7jp |
| nomu30 | recompile_keys/nomu30 |
| novelpad | novelkeys/novelpad |
| ogurec | drhigsby/ogurec |
| otaku_split/rev0 | takashiski/otaku_split/rev0 |
| otaku_split/rev1 | takashiski/otaku_split/rev1 |
| owl8 | dailycraft/owl8 |
| packrat | drhigsby/packrat |
| pistachio_mp | rate/pistachio_mp |
| pistachio_pro | rate/pistachio_pro |
| pistachio | rate/pistachio |
| plexus75 | checkerboards/plexus75 |
| pursuit40 | checkerboards/pursuit40 |
| qaz | tominabox1/qaz |
| quark | checkerboards/quark |
| rabbit_capture_plan | kakunpc/rabbit_capture_plan |
| rainkeeb | rainkeebs/rainkeeb |
| reviung33 | reviung/reviung33 |
| reviung34 | reviung/reviung34 |
| reviung39 | reviung/reviung39 |
| reviung41 | reviung/reviung41 |
| reviung53 | reviung/reviung53 |
| reviung5 | reviung/reviung5 |
| reviung61 | reviung/reviung61 |
| runner3680/3x6 | omkbd/runner3680/3x6 |
| runner3680/3x7 | omkbd/runner3680/3x7 |
| runner3680/3x8 | omkbd/runner3680/3x8 |
| runner3680/4x6 | omkbd/runner3680/4x6 |
| runner3680/4x7 | omkbd/runner3680/4x7 |
| runner3680/4x8 | omkbd/runner3680/4x8 |
| runner3680/5x6_5x8 | omkbd/runner3680/5x6_5x8 |
| runner3680/5x6 | omkbd/runner3680/5x6 |
| runner3680/5x7 | omkbd/runner3680/5x7 |
| runner3680/5x8 | omkbd/runner3680/5x8 |
| scarletbandana | woodkeys/scarletbandana |
| scythe | kagizaraya/scythe |
| seigaiha | yiancardesigns/seigaiha |
| setta21 | salicylic_acid3/setta21 |
| space_space/rev1 | qpockets/space_space/rev1 |
| space_space/rev2 | qpockets/space_space/rev2 |
| spiderisland/winry25tc | winry/winry25tc |
| splitreus62 | nacly/splitreus62 |
| squiggle/rev1 | ibnuda/squiggle/rev1 |
| standaside | edi/standaside |
| steal_this_keyboard | obosob/steal_this_keyboard |
| stella | hnahkb/stella |
| suihankey/alpha | kakunpc/suihankey/alpha |
| suihankey/rev1 | kakunpc/suihankey/rev1 |
| suihankey/split | kakunpc/suihankey/split |
| thedogkeyboard | kakunpc/thedogkeyboard |
| the_ruler | maple_computing/the_ruler |
| tiger910 | weirdo/tiger910 |
| treadstone32 | marksard/treadstone32 |
| treadstone48/rev1 | marksard/treadstone48/rev1 |
| treadstone48/rev2 | marksard/treadstone48/rev2 |
| txuu | matthewdias/txuu |
| ua62 | nacly/ua62 |
| underscore33/rev1 | tominabox1/underscore33/rev1 |
| underscore33/rev2 | tominabox1/underscore33/rev2 |
| vn66 | hnahkb/vn66 |
| wallaby | kkatano/wallaby |
| wanten | qpockets/wanten |
| whitefox | input_club/whitefox |
| wings42/rev1 | dailycraft/wings42/rev1 |
| wings42/rev1_extkeys | dailycraft/wings42/rev1_extkeys |
| wings42/rev2 | dailycraft/wings42/rev2 |
| yasui | rainkeebs/yasui |
| yd60mq | ymdk/yd60mq |
| yd68 | ydkb/yd68 |
| ymd75 | ymdk/ymd75 |
| ymd96 | ymdk/ymd96 |
| ymdk_np21 | ymdk/np21 |
| yurei | kkatano/yurei |
| zinc | 25keys/zinc |
| zinc/rev1 | 25keys/zinc/rev1 |
| zinc/reva | 25keys/zinc/reva |
## Notable core changes :id=notable-core
### New MCU Support :id=new-mcu-support
Building on previous cycles, QMK firmware picked up support for a couple extra MCU variants:
* STM32L432
* STM32L442
### New Drivers
QMK now has core-supplied support for the following device peripherals:
#### LED
* IS31FL3742A
* IS31FL3743A
* IS31FL3745
* IS31FL3746A
#### GPIO
* SN74x138
* mcp23018
---
## Full changelist
Core:
* Initial pass at data driven new-keyboard subcommand ([#12795](https://github.com/qmk/qmk_firmware/pull/12795))
* Don't send keyboard reports that propagate no changes to the host ([#14065](https://github.com/qmk/qmk_firmware/pull/14065))
* Custom matrix lite support for split keyboards ([#14674](https://github.com/qmk/qmk_firmware/pull/14674))
* Add sym_defer_pr debouncer type ([#14948](https://github.com/qmk/qmk_firmware/pull/14948))
* Add RGB matrix & LED Matrix support for IS31FL3742A, IS31FL3743A, IS31FL3745, IS31FL3746A ([#14989](https://github.com/qmk/qmk_firmware/pull/14989))
* New combo configuration options ([#15083](https://github.com/qmk/qmk_firmware/pull/15083))
* IS31FL3733 driver for LED Matrix ([#15088](https://github.com/qmk/qmk_firmware/pull/15088))
* Add open-drain GPIO support. ([#15282](https://github.com/qmk/qmk_firmware/pull/15282))
* Make (un)register code functions weak ([#15285](https://github.com/qmk/qmk_firmware/pull/15285))
* Split support for pointing devices. ([#15304](https://github.com/qmk/qmk_firmware/pull/15304))
* Added cancel_key_lock function ([#15321](https://github.com/qmk/qmk_firmware/pull/15321))
* Remove matrix_is_modified() and debounce_is_active() ([#15349](https://github.com/qmk/qmk_firmware/pull/15349))
* Change default USB Polling rate to 1kHz ([#15352](https://github.com/qmk/qmk_firmware/pull/15352))
* Implement MAGIC_TOGGLE_CONTROL_CAPSLOCK ([#15368](https://github.com/qmk/qmk_firmware/pull/15368))
* Tidy up existing i2c_master implementations ([#15376](https://github.com/qmk/qmk_firmware/pull/15376))
* Generalize Unicode defines ([#15409](https://github.com/qmk/qmk_firmware/pull/15409))
* Added external spi flash driver. ([#15419](https://github.com/qmk/qmk_firmware/pull/15419))
* Remove Deprecated USB Polling comment from vusb.c ([#15420](https://github.com/qmk/qmk_firmware/pull/15420))
* Expand rotational range for PMW3360 Optical Sensor ([#15431](https://github.com/qmk/qmk_firmware/pull/15431))
* ChibiOS SVN mirror script update ([#15435](https://github.com/qmk/qmk_firmware/pull/15435))
* Refactor `bootloader_jump()` implementations ([#15450](https://github.com/qmk/qmk_firmware/pull/15450))
* added missing audio_off_user() callback ([#15457](https://github.com/qmk/qmk_firmware/pull/15457))
* Migrate serial_uart usages to UART driver ([#15479](https://github.com/qmk/qmk_firmware/pull/15479))
* Migrate RN42 to UART driver and refactor ([#15492](https://github.com/qmk/qmk_firmware/pull/15492))
* pwm3360 driver cleanup and diff reduction to adns9800 ([#15559](https://github.com/qmk/qmk_firmware/pull/15559))
* Advanced deferred_exec for core-side code. ([#15579](https://github.com/qmk/qmk_firmware/pull/15579))
* Adjust tap_code16 to account for TAP_HOLD_CAPS_DELAY ([#15635](https://github.com/qmk/qmk_firmware/pull/15635))
* Slight tidy up of keyboard task loop ([#15725](https://github.com/qmk/qmk_firmware/pull/15725))
* Unify the key up/down behaviour of RGB keycodes ([#15730](https://github.com/qmk/qmk_firmware/pull/15730))
* Add PMW3389 optical sensor Support (Updated) ([#15740](https://github.com/qmk/qmk_firmware/pull/15740))
* ChibiOS: add support for HID Programmable Buttons ([#15787](https://github.com/qmk/qmk_firmware/pull/15787))
* ChibiOS: shorten USB disconnect state on boot to 50ms ([#15805](https://github.com/qmk/qmk_firmware/pull/15805))
* Add init function to clear previous matrix effect ([#15815](https://github.com/qmk/qmk_firmware/pull/15815))
* Optimize initialization of PMW3360 Sensor ([#15821](https://github.com/qmk/qmk_firmware/pull/15821))
* Add Pixel Flow RGB matrix effect ([#15829](https://github.com/qmk/qmk_firmware/pull/15829))
* PMW3389 Revert Firmware load during Initilization ([#15859](https://github.com/qmk/qmk_firmware/pull/15859))
* Combo `TAP_CODE_DELAY` and `clear_weak_mods` ([#15866](https://github.com/qmk/qmk_firmware/pull/15866))
* Relocate matrix_scan_quantum tasks ([#15882](https://github.com/qmk/qmk_firmware/pull/15882))
* Adjust mouse key defaults ([#15883](https://github.com/qmk/qmk_firmware/pull/15883))
* RGB Matrix: Reload from EEPROM ([#15923](https://github.com/qmk/qmk_firmware/pull/15923))
* Enable a default task throttle for split pointing. ([#15925](https://github.com/qmk/qmk_firmware/pull/15925))
* Move mcp23018 driver to core ([#15944](https://github.com/qmk/qmk_firmware/pull/15944))
* Relocate matrix_init_quantum content ([#15953](https://github.com/qmk/qmk_firmware/pull/15953))
* Align location of some host led logic ([#15954](https://github.com/qmk/qmk_firmware/pull/15954))
* Rename some Quantum keycodes ([#15968](https://github.com/qmk/qmk_firmware/pull/15968))
* Migrate more makefile utilities to builddefs sub-directory ([#16002](https://github.com/qmk/qmk_firmware/pull/16002))
* Various Makefile optimisations ([#16015](https://github.com/qmk/qmk_firmware/pull/16015))
* Add support for STM32L432, STM32L442. ([#16016](https://github.com/qmk/qmk_firmware/pull/16016))
* EEPROM refactor: remove `eeprom_teensy.c` by default, use transient instead ([#16020](https://github.com/qmk/qmk_firmware/pull/16020))
* Deprecate Split Transaction status field ([#16023](https://github.com/qmk/qmk_firmware/pull/16023))
* Rip out old macro and action_function system ([#16025](https://github.com/qmk/qmk_firmware/pull/16025))
* Add a script that simplifies running commands under docker. ([#16028](https://github.com/qmk/qmk_firmware/pull/16028))
* Add support for Q-series on the ckled2001 LED driver ([#16051](https://github.com/qmk/qmk_firmware/pull/16051))
* Remove unused suspend_idle ([#16063](https://github.com/qmk/qmk_firmware/pull/16063))
* Initial migration of suspend callbacks ([#16067](https://github.com/qmk/qmk_firmware/pull/16067))
* Add layout change callbacks to VIA ([#16087](https://github.com/qmk/qmk_firmware/pull/16087))
* Rename `AdafruitBLE` to `BluefruitLE` ([#16127](https://github.com/qmk/qmk_firmware/pull/16127))
* Update outputselect to use platform connected state API ([#16185](https://github.com/qmk/qmk_firmware/pull/16185))
* Remove default pointing device driver. ([#16190](https://github.com/qmk/qmk_firmware/pull/16190))
* Add SN74x138 demultiplexer driver ([#16217](https://github.com/qmk/qmk_firmware/pull/16217))
* Standardise error output. ([#16220](https://github.com/qmk/qmk_firmware/pull/16220))
* Followup to #16220, more test error output. ([#16221](https://github.com/qmk/qmk_firmware/pull/16221))
* Misc size regression script improvements. ([#16268](https://github.com/qmk/qmk_firmware/pull/16268))
* Align existing pca9555 driver to better match mcp23018 API ([#16277](https://github.com/qmk/qmk_firmware/pull/16277))
* Size checks print out target firmware file instead ([#16290](https://github.com/qmk/qmk_firmware/pull/16290))
CLI:
* `develop` changelog generator: use the PR title instead ([#15537](https://github.com/qmk/qmk_firmware/pull/15537))
* `develop` changelog generator: skip code formatting in listing ([#16215](https://github.com/qmk/qmk_firmware/pull/16215))
Keyboards:
* Durgod: Increase scan rate by using wait_us timer ([#14091](https://github.com/qmk/qmk_firmware/pull/14091))
* Add another GMMK Pro ANSI Keymap with custom RGB. ([#14243](https://github.com/qmk/qmk_firmware/pull/14243))
* Parse USB device version BCD ([#14580](https://github.com/qmk/qmk_firmware/pull/14580))
* Add vitoni keymap for GMMK Pro (ISO) ([#15006](https://github.com/qmk/qmk_firmware/pull/15006))
* Move bm65hsrgb_iso and bm68hsrgb to rev1/ to prepare for updates to the boards ([#15132](https://github.com/qmk/qmk_firmware/pull/15132))
* Convert ergoinu to SPLIT_KEYBOARD ([#15305](https://github.com/qmk/qmk_firmware/pull/15305))
* Convert not_so_minidox to SPLIT_KEYBOARD ([#15306](https://github.com/qmk/qmk_firmware/pull/15306))
* Added new handwired keyboard Wakizashi 40 ([#15336](https://github.com/qmk/qmk_firmware/pull/15336))
* Convert ai03/orbit to SPLIT_KEYBOARD ([#15340](https://github.com/qmk/qmk_firmware/pull/15340))
* Remove manual enable of LTO within user keymaps ([#15378](https://github.com/qmk/qmk_firmware/pull/15378))
* Move to organization folder ([#15481](https://github.com/qmk/qmk_firmware/pull/15481))
* Convert some more boards to Matrix Lite ([#15489](https://github.com/qmk/qmk_firmware/pull/15489))
* Organize Reviung boards into a directory ([#15636](https://github.com/qmk/qmk_firmware/pull/15636))
* move winry25tc to winry/ ([#15637](https://github.com/qmk/qmk_firmware/pull/15637))
* Rename ymdk_np21 to np21 + move to ymdk vendor folder ([#15641](https://github.com/qmk/qmk_firmware/pull/15641))
* move ymd96 to ymdk vendor folder ([#15643](https://github.com/qmk/qmk_firmware/pull/15643))
* move ymd75 to ymdk vendor folder ([#15645](https://github.com/qmk/qmk_firmware/pull/15645))
* move yd60mq to ymdk vendor folder ([#15647](https://github.com/qmk/qmk_firmware/pull/15647))
* rename idobo to idobao/id75, move to vendor folder ([#15661](https://github.com/qmk/qmk_firmware/pull/15661))
* move ID67 to IDOBAO vendor folder ([#15662](https://github.com/qmk/qmk_firmware/pull/15662))
* move ID80 to IDOBAO vendor folder ([#15665](https://github.com/qmk/qmk_firmware/pull/15665))
* move ID87 to IDOBAO vendor folder ([#15667](https://github.com/qmk/qmk_firmware/pull/15667))
* move montex to IDOBAO vendor folder ([#15668](https://github.com/qmk/qmk_firmware/pull/15668))
* move @yangdigi 's keyboards to a YDKB folder ([#15681](https://github.com/qmk/qmk_firmware/pull/15681))
* move @kkatano 's keyboards to kkatano user folder ([#15684](https://github.com/qmk/qmk_firmware/pull/15684))
* Sol 3 Keyboard from RGBKB ([#15687](https://github.com/qmk/qmk_firmware/pull/15687))
* move cu24, cu75, cu80/v1 into capsunlocked folder ([#15758](https://github.com/qmk/qmk_firmware/pull/15758))
* move mechkeys keyboards into the mechkeys/ vendor folder ([#15760](https://github.com/qmk/qmk_firmware/pull/15760))
* move @lyso1 's boards into lyso1/ ([#15767](https://github.com/qmk/qmk_firmware/pull/15767))
* move prototypist boards into vendor folder ([#15780](https://github.com/qmk/qmk_firmware/pull/15780))
* move @yiancar 's boards into yiancardesigns/ ([#15781](https://github.com/qmk/qmk_firmware/pull/15781))
* move novelkeys keyboards to vendor folder ([#15783](https://github.com/qmk/qmk_firmware/pull/15783))
* move @weirdo-f 's keyboards into weirdo/ ([#15785](https://github.com/qmk/qmk_firmware/pull/15785))
* move @marksard 's boards to marksard/ ([#15786](https://github.com/qmk/qmk_firmware/pull/15786))
* move input club keyboards into vendor folder ([#15788](https://github.com/qmk/qmk_firmware/pull/15788))
* move @monksoffunk 's boards into 25keys/ ([#15789](https://github.com/qmk/qmk_firmware/pull/15789))
* move @Salicylic-acid3 's keyboards to salicylic-acid3/ ([#15791](https://github.com/qmk/qmk_firmware/pull/15791))
* move @rainkeebs 's keyboards to rainkeebs/ ([#15797](https://github.com/qmk/qmk_firmware/pull/15797))
* move standaside into edi/ ([#15798](https://github.com/qmk/qmk_firmware/pull/15798))
* move @obosob 's boards into obosob/ ([#15799](https://github.com/qmk/qmk_firmware/pull/15799))
* move @nacly 's boards to nacly/ ([#15801](https://github.com/qmk/qmk_firmware/pull/15801))
* move @kakunpc 's keebs into kakunpc/ ([#15814](https://github.com/qmk/qmk_firmware/pull/15814))
* move @qpocket 's keyboards to qpocket/ ([#15827](https://github.com/qmk/qmk_firmware/pull/15827))
* BDN9 keymap ([#15924](https://github.com/qmk/qmk_firmware/pull/15924))
* move @matthewdias 's keebs into matthewdias/ ([#15991](https://github.com/qmk/qmk_firmware/pull/15991))
* move id80 and id75 to v1 to accommodate for id75 v2 and id80 v3 ([#15992](https://github.com/qmk/qmk_firmware/pull/15992))
* Remove `action_function()` from LFKeyboards boards ([#15993](https://github.com/qmk/qmk_firmware/pull/15993))
* move @latincompass (aka @18438880 , @haierwangwei2005)'s boards to /latincompass ([#16039](https://github.com/qmk/qmk_firmware/pull/16039))
* move g heavy industry boards into /gboards ([#16040](https://github.com/qmk/qmk_firmware/pull/16040))
* move @drhigsby 's boards into /drhigsby ([#16041](https://github.com/qmk/qmk_firmware/pull/16041))
* More keyboard rules.mk cleanups ([#16044](https://github.com/qmk/qmk_firmware/pull/16044))
* move @That-Canadian 's boards into /maple_computing ([#16050](https://github.com/qmk/qmk_firmware/pull/16050))
* move @takai 's keyboards into /recompile_keys ([#16053](https://github.com/qmk/qmk_firmware/pull/16053))
* move @satt99 's comet46 to satt/ ([#16059](https://github.com/qmk/qmk_firmware/pull/16059))
* move @ka2hiro 's boards into /kagizaraya ([#16070](https://github.com/qmk/qmk_firmware/pull/16070))
* move @GlenPickle 's chimera* boards into a folder ([#16072](https://github.com/qmk/qmk_firmware/pull/16072))
* move @yynmt 's boards into /yynmt ([#16075](https://github.com/qmk/qmk_firmware/pull/16075))
* move @Biacco42 's keebs into /biacco42 ([#16080](https://github.com/qmk/qmk_firmware/pull/16080))
* move unikeyboard boards to /unikeyboard ([#16081](https://github.com/qmk/qmk_firmware/pull/16081))
* move four_banger to bpiphany ([#16082](https://github.com/qmk/qmk_firmware/pull/16082))
* move @takashiski 's keebs into /takashiski ([#16089](https://github.com/qmk/qmk_firmware/pull/16089))
* move hid_liber to /bpiphany ([#16091](https://github.com/qmk/qmk_firmware/pull/16091))
* move spaceholdings boards into /spaceholdings ([#16096](https://github.com/qmk/qmk_firmware/pull/16096))
* move @7-rate 's keebs to /rate ([#16099](https://github.com/qmk/qmk_firmware/pull/16099))
* move @npspears 's boards into /checkerboards ([#16100](https://github.com/qmk/qmk_firmware/pull/16100))
* move @vuhopkep 's keebs into /hnahkb ([#16102](https://github.com/qmk/qmk_firmware/pull/16102))
* move @ibnuda 's keebs into /ibnuda ([#16108](https://github.com/qmk/qmk_firmware/pull/16108))
* move @tominabox1 's keebs into /tominabox1 ([#16109](https://github.com/qmk/qmk_firmware/pull/16109))
* move niu_mini to /kbdfans ([#16112](https://github.com/qmk/qmk_firmware/pull/16112))
* move woodkeys.click keyboards to /woodkeys ([#16113](https://github.com/qmk/qmk_firmware/pull/16113))
* move @omkbd 's boards to /omkbd ([#16116](https://github.com/qmk/qmk_firmware/pull/16116))
* Overhaul Tractyl Manuform ([#16134](https://github.com/qmk/qmk_firmware/pull/16134))
* Reduce firmware size for dztech/dz60rgb_wkl/v2_1:via ([#16254](https://github.com/qmk/qmk_firmware/pull/16254))
Keyboard fixes:
* Fix build failure for UT47 ([#15483](https://github.com/qmk/qmk_firmware/pull/15483))
* Update grs_70ec to use newer custom matrix ([#15609](https://github.com/qmk/qmk_firmware/pull/15609))
* fix compiler issue with Tractyl Manuform 4x6 ([#15646](https://github.com/qmk/qmk_firmware/pull/15646))
* Fix CI. ([#15828](https://github.com/qmk/qmk_firmware/pull/15828))
* Yet another bad `DEFAULT_FOLDER` fix. ([#15904](https://github.com/qmk/qmk_firmware/pull/15904))
* Fix build failures for `mschwingen/modelm` ([#15987](https://github.com/qmk/qmk_firmware/pull/15987))
* `rocketboard_16`: Fix mismatched LUT sizes ([#15997](https://github.com/qmk/qmk_firmware/pull/15997))
* Fix erroneous SRC for Clueboard 66 hotswap ([#16007](https://github.com/qmk/qmk_firmware/pull/16007))
* Fix handwired/ms_sculpt_mobile default keymap ([#16032](https://github.com/qmk/qmk_firmware/pull/16032))
* Re-org Hillside folders as new model prep. Fix default keymap. ([#16128](https://github.com/qmk/qmk_firmware/pull/16128))
* Fix up default folder locations. Again. ([#16135](https://github.com/qmk/qmk_firmware/pull/16135))
* Sol3 rgb fix ([#16157](https://github.com/qmk/qmk_firmware/pull/16157))
* Add missing `BOOTLOADER` for a handful of boards ([#16225](https://github.com/qmk/qmk_firmware/pull/16225))
* Remove half implemented micronucleus bootloader support ([#16252](https://github.com/qmk/qmk_firmware/pull/16252))
* Fixup bootloaders. ([#16256](https://github.com/qmk/qmk_firmware/pull/16256))
* Fix idobao/id80/v3 compilation errors ([#16280](https://github.com/qmk/qmk_firmware/pull/16280))
* Remove parent-relative paths from keyboards. ([#16282](https://github.com/qmk/qmk_firmware/pull/16282))
* Bodge for helix build failures ([#16376](https://github.com/qmk/qmk_firmware/pull/16376))
Others:
* Add a clarification to an error message ([#15207](https://github.com/qmk/qmk_firmware/pull/15207))
* Clang-format tweaks ([#15906](https://github.com/qmk/qmk_firmware/pull/15906))
* Add example implementations for compatible MCUs list ([#15935](https://github.com/qmk/qmk_firmware/pull/15935))
* Add version.h to gitignore ([#16222](https://github.com/qmk/qmk_firmware/pull/16222))
* Update keyboard mapping for all moved boards this cycle ([#16312](https://github.com/qmk/qmk_firmware/pull/16312))
* Align docs to new-keyboard behaviour ([#16357](https://github.com/qmk/qmk_firmware/pull/16357))
* Align new-keyboard with recent schema updates ([#16378](https://github.com/qmk/qmk_firmware/pull/16378))
Bugs:
* Fixes potential wpm sampling overflow, along with code comment fixes ([#15277](https://github.com/qmk/qmk_firmware/pull/15277))
* Add missing define for unicode common ([#15416](https://github.com/qmk/qmk_firmware/pull/15416))
* Fix for SPI write timing in PMW3360 driver ([#15519](https://github.com/qmk/qmk_firmware/pull/15519))
* Documentation Typo fix ([#15538](https://github.com/qmk/qmk_firmware/pull/15538))
* fix a typo ([#15557](https://github.com/qmk/qmk_firmware/pull/15557))
* Fix avr serial compile ([#15589](https://github.com/qmk/qmk_firmware/pull/15589))
* More AVR GPIO compilation fixes. ([#15592](https://github.com/qmk/qmk_firmware/pull/15592))
* Fix bug and code regression for Split Common ([#15603](https://github.com/qmk/qmk_firmware/pull/15603))
* Include missing string.h include in split ([#15606](https://github.com/qmk/qmk_firmware/pull/15606))
* Fixes for bootloader refactor build failures ([#15638](https://github.com/qmk/qmk_firmware/pull/15638))
* Update pmw3360 driver after reading the datasheet top to bottom. Fix some outdated refs. ([#15682](https://github.com/qmk/qmk_firmware/pull/15682))
* Fix split pointing for analog joystick ([#15691](https://github.com/qmk/qmk_firmware/pull/15691))
* Fix broken bootloader builds in develop. ([#15880](https://github.com/qmk/qmk_firmware/pull/15880))
* Fix optical sensor firmware upload ([#15919](https://github.com/qmk/qmk_firmware/pull/15919))
* Pass in the keyrecord_t of the dual-role/tapping key when calling per-key tap hold functions ([#15938](https://github.com/qmk/qmk_firmware/pull/15938))
* fixed typo in orange HSV colors decalartion ([#15976](https://github.com/qmk/qmk_firmware/pull/15976))
* Fix hack for chibiOS reset name ([#15984](https://github.com/qmk/qmk_firmware/pull/15984))
* Fix right side ws2812 leds having two indices ([#15985](https://github.com/qmk/qmk_firmware/pull/15985))
* Workaround in Makefile for recursive rule matching ([#15988](https://github.com/qmk/qmk_firmware/pull/15988))
* Fix BACKLIGHT_CAPS_LOCK warning ([#15999](https://github.com/qmk/qmk_firmware/pull/15999))
* Fix compilation issues for led indicators ([#16001](https://github.com/qmk/qmk_firmware/pull/16001))
* ChibiOS timer fixes ([#16017](https://github.com/qmk/qmk_firmware/pull/16017))
* Fix bootloader_jump for certain CTRL boards ([#16026](https://github.com/qmk/qmk_firmware/pull/16026))
* Fix up issue with PROGMEM and hand_swap_config ([#16027](https://github.com/qmk/qmk_firmware/pull/16027))
* Don't make EEPROM size assumptions with dynamic keymaps. ([#16054](https://github.com/qmk/qmk_firmware/pull/16054))
* fix missed .noci in reviung move ([#16107](https://github.com/qmk/qmk_firmware/pull/16107))
* Fix issues with Python Tests ([#16162](https://github.com/qmk/qmk_firmware/pull/16162))
* Fixup multibuild filegen ([#16166](https://github.com/qmk/qmk_firmware/pull/16166))
* Remove old .gitignore entry. Add more macOS junk exclusions. ([#16167](https://github.com/qmk/qmk_firmware/pull/16167))
* Fixup builds so that teensy EEPROM knows which MCU it's targeting. ([#16168](https://github.com/qmk/qmk_firmware/pull/16168))
* Create a build error if no bootloader is specified. ([#16181](https://github.com/qmk/qmk_firmware/pull/16181))
* Ensure `version.h` is recreated each build. ([#16188](https://github.com/qmk/qmk_firmware/pull/16188))
* Add `custom` to list of valid bootloader types in info.json ([#16228](https://github.com/qmk/qmk_firmware/pull/16228))
* Fix `layer_state` restoration at end of dynamic macro feature #16208 ([#16230](https://github.com/qmk/qmk_firmware/pull/16230))
* Minor additions #12795 ([#16276](https://github.com/qmk/qmk_firmware/pull/16276))
* Various fixes for matrix _RIGHT handling ([#16292](https://github.com/qmk/qmk_firmware/pull/16292))
* Fix slashes in build_full_test.mk ([#16300](https://github.com/qmk/qmk_firmware/pull/16300))
* ps2/avr: use the correct file name ([#16316](https://github.com/qmk/qmk_firmware/pull/16316))
* Fix compilation of ChibiOS UART driver ([#16348](https://github.com/qmk/qmk_firmware/pull/16348))
* Various fixes for new-keyboard ([#16358](https://github.com/qmk/qmk_firmware/pull/16358))
* Allow NO_PIN within data driven configuration ([#16359](https://github.com/qmk/qmk_firmware/pull/16359))

View File

@ -1,37 +0,0 @@
# Quantum Mechanical Keyboard Firmware
## What is QMK Firmware?
QMK (*Quantum Mechanical Keyboard*) is an open source community centered around developing computer input devices. The community encompasses all sorts of input devices, such as keyboards, mice, and MIDI devices. A core group of collaborators maintains [QMK Firmware](https://github.com/qmk/qmk_firmware), [QMK Configurator](https://config.qmk.fm), [QMK Toolbox](https://github.com/qmk/qmk_toolbox), [qmk.fm](https://qmk.fm), and this documentation with the help of community members like you.
## Get Started
<div class="flex-container">
?> **Basic** [QMK Configurator](newbs_building_firmware_configurator.md) <br>
User friendly graphical interfaces, no programming knowledge required.
?> **Advanced** [Use The Source](newbs.md) <br>
More powerful, but harder to use.
</div>
## Make It Yours
QMK has lots of features to explore, and a good deal of reference documentation to dig through. Most features are taken advantage of by modifying your [keymap](keymap.md), and changing the [keycodes](keycodes.md).
## Need help?
Check out the [support page](support.md) to see how you can get help using QMK.
## Give Back
There are a lot of ways you can contribute to the QMK Community. The easiest way to get started is to use it and spread the word to your friends.
* Help people out on our forums and chat rooms:
* [/r/olkb](https://www.reddit.com/r/olkb/)
* [Discord Server](https://discord.gg/Uq7gcHh)
* Contribute to our documentation by clicking "Edit This Page" at the bottom
* [Translate our documentation into your language](translating.md)
* [Report a bug](https://github.com/qmk/qmk_firmware/issues/new/choose)
* [Open a Pull Request](contributing.md)

View File

@ -1,4 +0,0 @@
- Translations
- [:uk: English](/)
- [:cn: 简体中文](/zh-cn/)
- [:jp: 日本語](/ja/)

View File

@ -1,192 +0,0 @@
* Tutorial
* [Introduction](newbs.md)
* [Setup](newbs_getting_started.md)
* [Building Your First Firmware](newbs_building_firmware.md)
* [Flashing Firmware](newbs_flashing.md)
* [Getting Help/Support](support.md)
* [Other Resources](newbs_learn_more_resources.md)
* [Syllabus](syllabus.md)
* FAQs
* [General FAQ](faq_general.md)
* [Build/Compile QMK](faq_build.md)
* [Troubleshooting QMK](faq_misc.md)
* [Debugging QMK](faq_debug.md)
* [Keymap FAQ](faq_keymap.md)
* [Squeezing Space from AVR](squeezing_avr.md)
* [Glossary](reference_glossary.md)
* Configurator
* [Overview](newbs_building_firmware_configurator.md)
* [Step by Step](configurator_step_by_step.md)
* [Troubleshooting](configurator_troubleshooting.md)
* [Architecture](configurator_architecture.md)
* QMK API
* [Overview](api_overview.md)
* [API Documentation](api_docs.md)
* [Keyboard Support](reference_configurator_support.md)
* [Adding Default Keymaps](configurator_default_keymaps.md)
* CLI
* [Overview](cli.md)
* [Configuration](cli_configuration.md)
* [Commands](cli_commands.md)
* [Tab Completion](cli_tab_complete.md)
* Using QMK
* Guides
* [Customizing Functionality](custom_quantum_functions.md)
* [Driver Installation with Zadig](driver_installation_zadig.md)
* [Keymap Overview](keymap.md)
* Development Environments
* [Docker Guide](getting_started_docker.md)
* [Vagrant Guide](getting_started_vagrant.md)
* Flashing
* [Flashing](flashing.md)
* [Flashing ATmega32A (ps2avrgb)](flashing_bootloadhid.md)
* IDEs
* [Using Eclipse with QMK](other_eclipse.md)
* [Using VSCode with QMK](other_vscode.md)
* Git Best Practices
* [Introduction](newbs_git_best_practices.md)
* [Your Fork](newbs_git_using_your_master_branch.md)
* [Merge Conflicts](newbs_git_resolving_merge_conflicts.md)
* [Fixing Your Branch](newbs_git_resynchronize_a_branch.md)
* Simple Keycodes
* [Full List](keycodes.md)
* [Basic Keycodes](keycodes_basic.md)
* [Language-Specific Keycodes](reference_keymap_extras.md)
* [Modifier Keys](feature_advanced_keycodes.md)
* [Quantum Keycodes](quantum_keycodes.md)
* [Magic Keycodes](keycodes_magic.md)
* Advanced Keycodes
* [Command](feature_command.md)
* [Dynamic Macros](feature_dynamic_macros.md)
* [Grave Escape](feature_grave_esc.md)
* [Leader Key](feature_leader_key.md)
* [Mod-Tap](mod_tap.md)
* [Macros](feature_macros.md)
* [Mouse Keys](feature_mouse_keys.md)
* [Programmable Button](feature_programmable_button.md)
* [Space Cadet Shift](feature_space_cadet.md)
* [US ANSI Shifted Keys](keycodes_us_ansi_shifted.md)
* Software Features
* [Auto Shift](feature_auto_shift.md)
* [Combos](feature_combo.md)
* [Debounce API](feature_debounce_type.md)
* [Key Lock](feature_key_lock.md)
* [Key Overrides](feature_key_overrides.md)
* [Layers](feature_layers.md)
* [One Shot Keys](one_shot_keys.md)
* [Pointing Device](feature_pointing_device.md)
* [Raw HID](feature_rawhid.md)
* [Sequencer](feature_sequencer.md)
* [Swap Hands](feature_swap_hands.md)
* [Tap Dance](feature_tap_dance.md)
* [Tap-Hold Configuration](tap_hold.md)
* [Terminal](feature_terminal.md)
* [Unicode](feature_unicode.md)
* [Userspace](feature_userspace.md)
* [WPM Calculation](feature_wpm.md)
* Hardware Features
* Displays
* [HD44780 LCD Controller](feature_hd44780.md)
* [ST7565 LCD Driver](feature_st7565.md)
* [OLED Driver](feature_oled_driver.md)
* Lighting
* [Backlight](feature_backlight.md)
* [LED Matrix](feature_led_matrix.md)
* [RGB Lighting](feature_rgblight.md)
* [RGB Matrix](feature_rgb_matrix.md)
* [Audio](feature_audio.md)
* [Bluetooth](feature_bluetooth.md)
* [Bootmagic Lite](feature_bootmagic.md)
* [Custom Matrix](custom_matrix.md)
* [Digitizer](feature_digitizer.md)
* [DIP Switch](feature_dip_switch.md)
* [Encoders](feature_encoders.md)
* [Haptic Feedback](feature_haptic_feedback.md)
* [Joystick](feature_joystick.md)
* [LED Indicators](feature_led_indicators.md)
* [MIDI](feature_midi.md)
* [Proton C Conversion](proton_c_conversion.md)
* [PS/2 Mouse](feature_ps2_mouse.md)
* [Split Keyboard](feature_split_keyboard.md)
* [Stenography](feature_stenography.md)
* [Thermal Printer](feature_thermal_printer.md)
* [Velocikey](feature_velocikey.md)
* Keyboard Building
* [Easy Maker for One Offs](easy_maker.md)
* [Porting Keyboards](porting_your_keyboard_to_qmk.md)
* [Hand Wiring Guide](hand_wire.md)
* [ISP Flashing Guide](isp_flashing_guide.md)
* Developing QMK
* [PR Checklist](pr_checklist.md)
* Breaking Changes
* [Overview](breaking_changes.md)
* [My Pull Request Was Flagged](breaking_changes_instructions.md)
* [Most Recent ChangeLog](ChangeLog/20220226.md "QMK v0.16.0 - 2022 Feb 26")
* [Past Breaking Changes](breaking_changes_history.md)
* C Development
* [ARM Debugging Guide](arm_debugging.md)
* [Coding Conventions](coding_conventions_c.md)
* [Compatible Microcontrollers](compatible_microcontrollers.md)
* [Drivers](hardware_drivers.md)
* [ADC Driver](adc_driver.md)
* [Audio Driver](audio_driver.md)
* [I2C Driver](i2c_driver.md)
* [SPI Driver](spi_driver.md)
* [WS2812 Driver](ws2812_driver.md)
* [EEPROM Driver](eeprom_driver.md)
* ['serial' Driver](serial_driver.md)
* [UART Driver](uart_driver.md)
* [GPIO Controls](internals_gpio_control.md)
* [Keyboard Guidelines](hardware_keyboard_guidelines.md)
* Python Development
* [Coding Conventions](coding_conventions_python.md)
* [QMK CLI Development](cli_development.md)
* Configurator Development
* QMK API
* [Development Environment](api_development_environment.md)
* [Architecture Overview](api_development_overview.md)
* Hardware Platform Development
* Arm/ChibiOS
* [Selecting an MCU](platformdev_selecting_arm_mcu.md)
* [Early initialization](platformdev_chibios_earlyinit.md)
* QMK Reference
* [Contributing to QMK](contributing.md)
* [Translating the QMK Docs](translating.md)
* [Config Options](config_options.md)
* [Data Driven Configuration](data_driven_config.md)
* [Make Documentation](getting_started_make_guide.md)
* [Documentation Best Practices](documentation_best_practices.md)
* [Documentation Templates](documentation_templates.md)
* [Community Layouts](feature_layouts.md)
* [Unit Testing](unit_testing.md)
* [Useful Functions](ref_functions.md)
* [info.json Format](reference_info_json.md)
* For a Deeper Understanding
* [How Keyboards Work](how_keyboards_work.md)
* [How a Matrix Works](how_a_matrix_works.md)
* [Understanding QMK](understanding_qmk.md)
* QMK Internals (In Progress)
* [Defines](internals_defines.md)
* [Input Callback Reg](internals_input_callback_reg.md)
* [Midi Device](internals_midi_device.md)
* [Midi Device Setup Process](internals_midi_device_setup_process.md)
* [Midi Util](internals_midi_util.md)
* [Send Functions](internals_send_functions.md)
* [Sysex Tools](internals_sysex_tools.md)

View File

@ -1,156 +0,0 @@
# ADC Driver
QMK can leverage the Analog-to-Digital Converter (ADC) on supported MCUs to measure voltages on certain pins. This can be useful for implementing things such as battery level indicators for Bluetooth keyboards, or volume controls using a potentiometer, as opposed to a [rotary encoder](feature_encoders.md).
This driver currently supports both AVR and a limited selection of ARM devices. The values returned are 10-bit integers (0-1023) mapped between 0V and VCC (usually 5V or 3.3V for AVR, 3.3V only for ARM), however on ARM there is more flexibility in control of operation through `#define`s if you need more precision.
## Usage
To use this driver, add the following to your `rules.mk`:
```make
SRC += analog.c
```
Then place this include at the top of your code:
```c
#include "analog.h"
```
## Channels
### AVR
|Channel|AT90USB64/128|ATmega16/32U4|ATmega32A|ATmega328/P|
|-------|-------------|-------------|---------|----------|
|0 |`F0` |`F0` |`A0` |`C0` |
|1 |`F1` |`F1` |`A1` |`C1` |
|2 |`F2` | |`A2` |`C2` |
|3 |`F3` | |`A3` |`C3` |
|4 |`F4` |`F4` |`A4` |`C4` |
|5 |`F5` |`F5` |`A5` |`C5` |
|6 |`F6` |`F6` |`A6` |* |
|7 |`F7` |`F7` |`A7` |* |
|8 | |`D4` | | |
|9 | |`D6` | | |
|10 | |`D7` | | |
|11 | |`B4` | | |
|12 | |`B5` | | |
|13 | |`B6` | | |
<sup>\* The ATmega328/P possesses two extra ADC channels; however, they are not present on the DIP pinout, and are not shared with GPIO pins. You can use `adc_read()` directly to gain access to these.</sup>
### ARM
Note that some of these pins are doubled-up on ADCs with the same channel. This is because the pins can be used for either ADC.
Also note that the F0 and F3 use different numbering schemes. The F0 has a single ADC and the channels are 0-indexed, whereas the F3 has 4 ADCs and the channels are 1-indexed. This is because the F0 uses the `ADCv1` implementation of the ADC, whereas the F3 uses the `ADCv3` implementation.
|ADC|Channel|STM32F0xx|STM32F1xx|STM32F3xx|STM32F4xx|
|---|-------|---------|---------|---------|---------|
|1 |0 |`A0` |`A0` | |`A0` |
|1 |1 |`A1` |`A1` |`A0` |`A1` |
|1 |2 |`A2` |`A2` |`A1` |`A2` |
|1 |3 |`A3` |`A3` |`A2` |`A3` |
|1 |4 |`A4` |`A4` |`A3` |`A4` |
|1 |5 |`A5` |`A5` |`F4` |`A5` |
|1 |6 |`A6` |`A6` |`C0` |`A6` |
|1 |7 |`A7` |`A7` |`C1` |`A7` |
|1 |8 |`B0` |`B0` |`C2` |`B0` |
|1 |9 |`B1` |`B1` |`C3` |`B1` |
|1 |10 |`C0` |`C0` |`F2` |`C0` |
|1 |11 |`C1` |`C1` | |`C1` |
|1 |12 |`C2` |`C2` | |`C2` |
|1 |13 |`C3` |`C3` | |`C3` |
|1 |14 |`C4` |`C4` | |`C4` |
|1 |15 |`C5` |`C5` | |`C5` |
|1 |16 | | | | |
|2 |0 | |`A0`¹ | |`A0`² |
|2 |1 | |`A1`¹ |`A4` |`A1`² |
|2 |2 | |`A2`¹ |`A5` |`A2`² |
|2 |3 | |`A3`¹ |`A6` |`A3`² |
|2 |4 | |`A4`¹ |`A7` |`A4`² |
|2 |5 | |`A5`¹ |`C4` |`A5`² |
|2 |6 | |`A6`¹ |`C0` |`A6`² |
|2 |7 | |`A7`¹ |`C1` |`A7`² |
|2 |8 | |`B0`¹ |`C2` |`B0`² |
|2 |9 | |`B1`¹ |`C3` |`B1`² |
|2 |10 | |`C0`¹ |`F2` |`C0`² |
|2 |11 | |`C1`¹ |`C5` |`C1`² |
|2 |12 | |`C2`¹ |`B2` |`C2`² |
|2 |13 | |`C3`¹ | |`C3`² |
|2 |14 | |`C4`¹ | |`C4`² |
|2 |15 | |`C5`¹ | |`C5`² |
|2 |16 | | | | |
|3 |0 | |`A0`¹ | |`A0`² |
|3 |1 | |`A1`¹ |`B1` |`A1`² |
|3 |2 | |`A2`¹ |`E9` |`A2`² |
|3 |3 | |`A3`¹ |`E13` |`A3`² |
|3 |4 | |`F6`¹ | |`F6`² |
|3 |5 | |`F7`¹ |`B13` |`F7`² |
|3 |6 | |`F8`¹ |`E8` |`F8`² |
|3 |7 | |`F9`¹ |`D10` |`F9`² |
|3 |8 | |`F10`¹ |`D11` |`F10`² |
|3 |9 | | |`D12` |`F3`² |
|3 |10 | |`C0`¹ |`D13` |`C0`² |
|3 |11 | |`C1`¹ |`D14` |`C1`² |
|3 |12 | |`C2`¹ |`B0` |`C2`² |
|3 |13 | |`C3`¹ |`E7` |`C3`² |
|3 |14 | | |`E10` |`F4`² |
|3 |15 | | |`E11` |`F5`² |
|3 |16 | | |`E12` | |
|4 |1 | | |`E14` | |
|4 |2 | | |`E15` | |
|4 |3 | | |`B12` | |
|4 |4 | | |`B14` | |
|4 |5 | | |`B15` | |
|4 |6 | | |`E8` | |
|4 |7 | | |`D10` | |
|4 |8 | | |`D11` | |
|4 |9 | | |`D12` | |
|4 |10 | | |`D13` | |
|4 |11 | | |`D14` | |
|4 |12 | | |`D8` | |
|4 |13 | | |`D9` | |
|4 |14 | | | | |
|4 |15 | | | | |
|4 |16 | | | | |
<sup>¹ As of ChibiOS 20.3.4, the ADC driver for STM32F1xx devices supports only ADC1, therefore any configurations involving ADC2 or ADC3 cannot actually be used. In particular, pins `F6`…`F10`, which are present at least on some STM32F103x[C-G] devices, cannot be used as ADC inputs because of this driver limitation.</sup>
<sup>² Not all STM32F4xx devices have ADC2 and/or ADC3, therefore some configurations shown in this table may be unavailable; in particular, pins `F4`…`F10` cannot be used as ADC inputs on devices which do not have ADC3. Check the device datasheet to confirm which pin functions are supported.</sup>
## Functions
### AVR
|Function |Description |
|----------------------------|-------------------------------------------------------------------------------------------------------------------|
|`analogReference(mode)` |Sets the analog voltage reference source. Must be one of `ADC_REF_EXTERNAL`, `ADC_REF_POWER` or `ADC_REF_INTERNAL`.|
|`analogReadPin(pin)` |Reads the value from the specified pin, eg. `F6` for ADC6 on the ATmega32U4. |
|`pinToMux(pin)` |Translates a given pin to a mux value. If an unsupported pin is given, returns the mux value for "0V (GND)". |
|`adc_read(mux)` |Reads the value from the ADC according to the specified mux. See your MCU's datasheet for more information. |
### ARM
|Function |Description |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`analogReadPin(pin)` |Reads the value from the specified pin, eg. `A0` for channel 0 on the STM32F0 and ADC1 channel 1 on the STM32F3. Note that if a pin can be used for multiple ADCs, it will pick the lower numbered ADC for this function. eg. `C0` will be channel 6 of ADC 1 when it could be used for ADC 2 as well.|
|`analogReadPinAdc(pin, adc)`|Reads the value from the specified pin and ADC, eg. `C0, 1` will read from channel 6, ADC 2 instead of ADC 1. Note that the ADCs are 0-indexed for this function. |
|`pinToMux(pin)` |Translates a given pin to a channel and ADC combination. If an unsupported pin is given, returns the mux value for "0V (GND)". |
|`adc_read(mux)` |Reads the value from the ADC according to the specified pin and ADC combination. See your MCU's datasheet for more information. |
## Configuration
## ARM
The ARM implementation of the ADC has a few additional options that you can override in your own keyboards and keymaps to change how it operates. Please consult the corresponding `hal_adc_lld.h` in ChibiOS for your specific microcontroller for further documentation on your available options.
|`#define` |Type |Default |Description |
|---------------------|------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|`ADC_CIRCULAR_BUFFER`|`bool`|`false` |If `true`, then the implementation will use a circular buffer. |
|`ADC_NUM_CHANNELS` |`int` |`1` |Sets the number of channels that will be scanned as part of an ADC operation. The current implementation only supports `1`. |
|`ADC_BUFFER_DEPTH` |`int` |`2` |Sets the depth of each result. Since we are only getting a 10-bit result by default, we set this to 2 bytes so we can contain our one value. This could be set to 1 if you opt for an 8-bit or lower result.|
|`ADC_SAMPLING_RATE` |`int` |`ADC_SMPR_SMP_1P5` |Sets the sampling rate of the ADC. By default, it is set to the fastest setting. |
|`ADC_RESOLUTION` |`int` |`ADC_CFGR1_RES_10BIT` or `ADC_CFGR_RES_10BITS`|The resolution of your result. We choose 10 bit by default, but you can opt for 12, 10, 8, or 6 bit. Different MCUs use slightly different names for the resolution constants. |

View File

@ -1,3 +0,0 @@
# Development Environment Setup
To setup a development stack head over to the [qmk_web_stack](https://github.com/qmk/qmk_web_stack).

View File

@ -1,44 +0,0 @@
# QMK Compiler Development Guide
This page attempts to introduce developers to the QMK Compiler. It does not go into nitty gritty details- for that you should read code. What this will give you is a framework to hang your understanding on as you read the code.
# Overview
The QMK Compile API consists of a few movings parts:
![Architecture Diagram](https://raw.githubusercontent.com/qmk/qmk_api/master/docs/architecture.svg)
API Clients interact exclusively with the API service. This is where they submit jobs, check status, and download results. The API service inserts compile jobs into [Redis Queue](https://python-rq.org) and checks both RQ and S3 for the results of those jobs.
Workers fetch new compile jobs from RQ, compile them, and then upload the source and the binary to an S3 compatible storage engine.
# Workers
QMK Compiler Workers are responsible for doing the actual building. When a worker pulls a job from RQ it does several things to complete that job:
* Make a fresh qmk_firmware checkout
* Use the supplied layers and keyboard metadata to build a `keymap.c`
* Build the firmware
* Zip a copy of the source
* Upload the firmware, source zip, and a metadata file to S3.
* Report the status of the job to RQ
# API Service
The API service is a relatively simple Flask application. There are a few main views you should understand.
## @app.route('/v1/compile', methods=['POST'])
This is the main entrypoint for the API. A client's interaction starts here. The client POST's a JSON document describing their keyboard, and the API does some (very) basic validation of that JSON before submitting the compile job.
## @app.route('/v1/compile/&lt;string:job_id&gt;', methods=['GET'])
This is the most frequently called endpoint. It pulls the job details from redis, if they're still available, or the cached job details on S3 if they're not.
## @app.route('/v1/compile/&lt;string:job_id&gt;/download', methods=['GET'])
This method allows users to download the compiled firmware file.
## @app.route('/v1/compile/&lt;string:job_id&gt;/source', methods=['GET'])
This method allows users to download the source for their firmware.

View File

@ -1,68 +0,0 @@
# QMK API
This page describes using the QMK API. If you are an application developer you can use this API to compile firmware for any [QMK](https://qmk.fm) Keyboard.
## Overview
This service is an asynchronous API for compiling custom keymaps. You POST some JSON to the API, periodically check the status, and when your firmware has finished compiling you can download the resulting firmware and (if desired) source code for that firmware.
#### Example JSON Payload:
```json
{
"keyboard": "clueboard/66/rev2",
"keymap": "my_awesome_keymap",
"layout": "LAYOUT_all",
"layers": [
["KC_GRV","KC_1","KC_2","KC_3","KC_4","KC_5","KC_6","KC_7","KC_8","KC_9","KC_0","KC_MINS","KC_EQL","KC_GRV","KC_BSPC","KC_PGUP","KC_TAB","KC_Q","KC_W","KC_E","KC_R","KC_T","KC_Y","KC_U","KC_I","KC_O","KC_P","KC_LBRC","KC_RBRC","KC_BSLS","KC_PGDN","KC_CAPS","KC_A","KC_S","KC_D","KC_F","KC_G","KC_H","KC_J","KC_K","KC_L","KC_SCLN","KC_QUOT","KC_NUHS","KC_ENT","KC_LSFT","KC_NUBS","KC_Z","KC_X","KC_C","KC_V","KC_B","KC_N","KC_M","KC_COMM","KC_DOT","KC_SLSH","KC_RO","KC_RSFT","KC_UP","KC_LCTL","KC_LGUI","KC_LALT","KC_MHEN","KC_SPC","KC_SPC","KC_HENK","KC_RALT","KC_RCTL","MO(1)","KC_LEFT","KC_DOWN","KC_RIGHT"],
["KC_ESC","KC_F1","KC_F2","KC_F3","KC_F4","KC_F5","KC_F6","KC_F7","KC_F8","KC_F9","KC_F10","KC_F11","KC_F12","KC_TRNS","KC_DEL","BL_STEP","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","_______","KC_TRNS","KC_PSCR","KC_SLCK","KC_PAUS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","MO(2)","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_PGUP","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","MO(1)","KC_LEFT","KC_PGDN","KC_RGHT"],
["KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","RESET","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","MO(2)","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","KC_TRNS","MO(1)","KC_TRNS","KC_TRNS","KC_TRNS"]
]
}
```
As you can see the payload describes all aspects of a keyboard necessary to create and generate a firmware. Each layer is a single list of QMK keycodes the same length as the keyboard's `LAYOUT` macro. If a keyboard supports mulitple `LAYOUT` macros you can specify which macro to use.
## Submitting a Compile Job
To compile your keymap into a firmware simply POST your JSON to the `/v1/compile` endpoint. In the following example we've placed the JSON payload into a file named `json_data`.
```
$ curl -H "Content-Type: application/json" -X POST -d "$(< json_data)" https://api.qmk.fm/v1/compile
{
"enqueued": true,
"job_id": "ea1514b3-bdfc-4a7b-9b5c-08752684f7f6"
}
```
## Checking The Status
After submitting your keymap you can check the status using a simple HTTP GET call:
```
$ curl https://api.qmk.fm/v1/compile/ea1514b3-bdfc-4a7b-9b5c-08752684f7f6
{
"created_at": "Sat, 19 Aug 2017 21:39:12 GMT",
"enqueued_at": "Sat, 19 Aug 2017 21:39:12 GMT",
"id": "f5f9b992-73b4-479b-8236-df1deb37c163",
"status": "running",
"result": null
}
```
This shows us that the job has made it through the queue and is currently running. There are 5 possible statuses:
* **failed**: Something about the compiling service has broken.
* **finished**: The compilation is complete and you should check `result` to see the results.
* **queued**: The keymap is waiting for a compilation server to become available.
* **running**: The compilation is in progress and should be complete soon.
* **unknown**: A serious error has occurred and you should [file a bug](https://github.com/qmk/qmk_compiler/issues).
## Examining Finished Results
Once your compile job has finished you'll check the `result` key. The value of this key is a hash containing several key bits of information:
* `firmware_binary_url`: A list of URLs for the flashable firmware
* `firmware_keymap_url`: A list of URLs for the `keymap.c`
* `firmware_source_url`: A list of URLs for the full firmware source code
* `output`: The stdout and stderr for this compile job. Errors will be found here.

View File

@ -1,15 +0,0 @@
# QMK API
The QMK API provides an asynchronous API that Web and GUI tools can use to compile arbitrary keymaps for any keyboard supported by [QMK](https://qmk.fm/). The stock keymap template supports all QMK keycodes that do not require supporting C code. Keyboard maintainers can supply their own custom templates to enable more functionality.
## App Developers
If you are an app developer interested in using this API in your application you should head over to [Using The API](api_docs.md).
## Keyboard Maintainers
If you would like to enhance your keyboard's support in the QMK Compiler API head over to the [Keyboard Support](reference_configurator_support.md) section.
## Backend Developers
If you are interested in working on the API itself you should start by setting up a [Development Environment](api_development_environment.md), then check out [Hacking On The API](api_development_overview.md).

View File

@ -1,87 +0,0 @@
# ARM Debugging using Eclipse
This page describes how to setup debugging for ARM MCUs using an SWD adapter and open-source/free tools. In this guide we will install GNU MCU Eclipse IDE for C/C++ Developers and OpenOCD together with all the necessary dependencies.
This guide is catered towards advance users and assumes you can compile an ARM compatible keyboard on your machine using the MAKE flow.
## Installing the software
The main objective here is to get the MCU Eclipse IDE correctly installed on our machine. The necessary instructions are derived from [this](https://gnu-mcu-eclipse.github.io/install/) install guide.
### The xPack Manager
This tool is a software package manager and it is used to help us get the necessary dependencies.
XPM runs using Node.js so grab that from [here](https://nodejs.org/en/). After installation, open a terminal and type `npm -v`. A reply with the version number means that the installation was successful.
XPM installation instructions can be found [here](https://www.npmjs.com/package/xpm) and are OS specific. Entering `xpm --version` to your terminal should return the software version.
### The ARM Toolchain
Using XPM it is very easy to install the ARM toolchain. Enter the command `xpm install --global @xpack-dev-tools/arm-none-eabi-gcc`.
### Windows build tools
If you are using windows you need to install this!
`xpm install --global @gnu-mcu-eclipse/windows-build-tools`
### Programmer/Debugger Drivers
Now it's time to install your programmer's drivers. This tutorial was made using an ST-Link v2 which you can get from almost anywhere.
If you have an ST-Link the drivers can be found [here](https://www.st.com/en/development-tools/stsw-link009.html) otherwise consult the manufacturer of your tool.
### OpenOCD
This dependency allows SWD access from GDB and it is essential for debugging. Run `xpm install --global @xpack-dev-tools/openocd`.
### Java
Java is needed by Eclipse so please download it from [here](https://www.oracle.com/technetwork/java/javase/downloads/index.html).
### GNU MCU Eclipse IDE
Now its finally time to install the IDE. Use the Release page [here](https://github.com/gnu-mcu-eclipse/org.eclipse.epp.packages/releases/) to get the latest version.
## Configuring Eclipse
Open up the Eclipse IDE we just downloaded. To import our QMK directory select File -> Import -> C/C++ -> Existing Code as Makefile Project. Select Next and use Browse to select your QMK folder. In the tool-chain list select ARM Cross GCC and select Finish.
Now you can see the QMK folder on the left hand side. Right click it and select Properties. On the left hand side, expand MCU and select ARM Toolchains Paths. Press xPack and OK. Repeat for OpenOCD Path and if you are on Windows for Build Tools Path. Select Apply and Close.
Now its time to install the necessary MCU packages. Go to Packs perspective by selecting Window -> Perspective -> Open Perspective -> Other... -> Packs. Now select the yellow refresh symbol next to the Packs tab. This will take a long time as it is requesting the MCU definitions from various places. If some of the links fail you can probably select Ignore.
When this finishes you must find the MCU which we will be building/debugging for. In this example I will be using the STM32F3 series MCUs. On the left, select STMicroelectronics -> STM32F3 Series. On the middle window we can see the pack. Right click and select Install. Once that is done we can go back to the default perspective, Window -> Perspective -> Open Perspective -> Other... -> C/C++.
We need to let eclipse know the device we intent to build QMK on. Right click on the QMK folder -> Properties -> C/C++ Build -> Settings. Select the Devices tab and under Devices select the appropriate variant of your MCU. For my example it is STM32F303CC
While we are here let's setup the build command as well. Select C/C++ Build and then the Behavior tab. On the Build command, replace `all` with your necessary make command. For example for a rev6 Planck with the default keymap this would be `planck/rev6:default`. Select Apply and Close.
## Building
If you have setup everything correctly pressing the hammer button should build the firmware for you and a .bin file should appear.
## Debugging
### Connecting the Debugger
ARM MCUs use the Single Wire Debug (SWD) protocol which comprises of the clock (SWCLK) signal and the data (SWDIO) signal. Connecting this two wires and ground should be enough to allow full manipulation of the MCU. Here we assume that the keyboard will be powered though USB. The RESET signal is not necessary as we can manually assert it using the reset button. For a more advance setup, the SWO signal can be used which pipes printf and scanf asynchronously to the host but for our setup we will ignore it.
NOTE: Make sure the SWCLK and SWDIO pins are not used in the matrix of your keyboard. If they are you can temporarily switch them for some other pins.
### Configuring the Debugger
Right click on your QMK folder, select Debug As -> Debug Configurations... . Here double click on GDB OpenOCD Debugging. Select the Debugger tab and enter the configuration necessary for your MCU. This might take some fiddling and Googling to find out. The default script for the STM32F3 is called `stm32f3discovery.cfg`. To let OpenOCD know, in the Config options enter `-f board/stm32f3discovery.cfg`.
NOTE: In my case this configuration script requires editing to disable the reset assertion. The locations of the scripts can be found in the actual executable field usually under the path `openocd/version/.content/scripts/board`. Here I edited `reset_config srst_only` to `reset_config none`.
Select Apply and Close.
### Running the Debugger.
Reset your keyboard.
Press the bug icon and if all goes well you should soon find yourself in the Debug perspective. Here the program counter will pause at the beginning of the main function and wait for you to press Play. Most of the features of all debuggers work on Arm MCUs but for exact details Google is your friend!
Happy debugging!

View File

@ -1,221 +0,0 @@
# Audio Driver :id=audio-driver
The [Audio feature](feature_audio.md) breaks the hardware specifics out into separate, exchangeable driver units, with a common interface to the audio-"core" - which itself handles playing songs and notes while tracking their progress in an internal state, initializing/starting/stopping the driver as needed.
Not all MCUs support every available driver, either the platform-support is not there (yet?) or the MCU simply does not have the required hardware peripheral.
## AVR :id=avr
Boards built around an Atmega32U4 can use two sets of PWM capable pins, each driving a separate speaker.
The possible configurations are:
| | Timer3 | Timer1 |
|--------------|-------------|--------------|
| one speaker | C4,C5 or C6 | |
| one speaker | | B4, B5 or B7 |
| two speakers | C4,C5 or C6 | B4, B5 or B7 |
Currently there is only one/default driver for AVR based boards, which is automatically configured to:
```make
AUDIO_DRIVER = pwm_hardware
```
## ARM :id=arm
For Arm based boards, QMK depends on ChibiOS - hence any MCU supported by the later is likely usable, as long as certain hardware peripherals are available.
Supported wiring configurations, with their ChibiOS/MCU peripheral requirement are listed below;
piezo speakers are marked with :one: for the first/primary and :two: for the secondary.
| driver | GPTD6<br>Tim6 | GPTD7<br>Tim7 | GPTD8<br>Tim8 | PWMD1<sup>1</sup><br>Tim1_Ch1 |
|--------------|------------------------------------------|------------------------|---------------|-------------------------------|
| dac_basic | A4+DACD1 = :one: | A5+DACD2 = :one: | state | |
| | A4+DACD1 = :one: + Gnd | A5+DACD2 = :two: + Gnd | state | |
| | A4+DACD1 = :two: + Gnd | A5+DACD2 = :one: + Gnd | state | |
| | A4+DACD1 = :one: + Gnd | | state | |
| | | A5+DACD2 = :one: + Gnd | state | |
| dac_additive | A4+DACD1 = :one: + Gnd | | | |
| | A5+DACD2 = :one: + Gnd | | | |
| | A4+DACD1 + A5+DACD2 = :one: <sup>2</sup> | | | |
| pwm_software | state-update | | | any = :one: |
| pwm hardware | state-update | | | A8 = :one: <sup>3</sup> |
<sup>1</sup>: the routing and alternate functions for PWM differ sometimes between STM32 MCUs, if in doubt consult the data-sheet
<sup>2</sup>: one piezo connected to A4 and A5, with AUDIO_PIN_ALT_AS_NEGATIVE set
<sup>3</sup>: TIM1_CH1 = A8 on STM32F103C8, other combinations are possible, see Data-sheet. configured with: AUDIO_PWM_DRIVER and AUDIO_PWM_CHANNEL
### DAC basic :id=dac-basic
The default driver for ARM boards, in absence of an overriding configuration.
This driver needs one Timer per enabled/used DAC channel, to trigger conversion; and a third timer to trigger state updates with the audio-core.
Additionally, in the board config, you'll want to make changes to enable the DACs, GPT for Timers 6, 7 and 8:
```c
//halconf.h:
#define HAL_USE_DAC TRUE
#define HAL_USE_GPT TRUE
#include_next <halconf.h>
```
```c
// mcuconf.h:
#include_next <mcuconf.h>
#undef STM32_DAC_USE_DAC1_CH1
#define STM32_DAC_USE_DAC1_CH1 TRUE
#undef STM32_DAC_USE_DAC1_CH2
#define STM32_DAC_USE_DAC1_CH2 TRUE
#undef STM32_GPT_USE_TIM6
#define STM32_GPT_USE_TIM6 TRUE
#undef STM32_GPT_USE_TIM7
#define STM32_GPT_USE_TIM7 TRUE
#undef STM32_GPT_USE_TIM8
#define STM32_GPT_USE_TIM8 TRUE
```
?> Note: DAC1 (A4) uses TIM6, DAC2 (A5) uses TIM7, and the audio state timer uses TIM8 (configurable).
You can also change the timer used for the overall audio state by defining the driver. For instance:
```c
#define AUDIO_STATE_TIMER GPTD9
```
### DAC additive :id=dac-additive
only needs one timer (GPTD6, Tim6) to trigger the DAC unit to do a conversion; the audio state updates are in turn triggered during the DAC callback.
Additionally, in the board config, you'll want to make changes to enable the DACs, GPT for Timer 6:
```c
//halconf.h:
#define HAL_USE_DAC TRUE
#define HAL_USE_GPT TRUE
#include_next <halconf.h>
```
```c
// mcuconf.h:
#include_next <mcuconf.h>
#undef STM32_DAC_USE_DAC1_CH1
#define STM32_DAC_USE_DAC1_CH1 TRUE
#undef STM32_DAC_USE_DAC1_CH2
#define STM32_DAC_USE_DAC1_CH2 TRUE
#undef STM32_GPT_USE_TIM6
#define STM32_GPT_USE_TIM6 TRUE
```
### DAC Config
| Define | Defaults | Description --------------------------------------------------------------------------------------------- |
| `AUDIO_DAC_SAMPLE_MAX` | `4095U` | Highest value allowed. Lower value means lower volume. And 4095U is the upper limit, since this is limited to a 12 bit value. Only effects non-pregenerated samples. |
| `AUDIO_DAC_OFF_VALUE` | `AUDIO_DAC_SAMPLE_MAX / 2` | The value of the DAC when notplaying anything. Some setups may require a high (`AUDIO_DAC_SAMPLE_MAX`) or low (`0`) value here. |
| `AUDIO_MAX_SIMULTANEOUS_TONES` | __see next table__ | The number of tones that can be played simultaneously. A value that is too high may freeze the controller or glitch out when too many tones are being played. |
| `AUDIO_DAC_SAMPLE_RATE` | __see next table__ | Effective bit rate of the DAC (in hertz), higher limits simultaneous tones, and lower sacrifices quality. |
There are a number of predefined quality settings that you can use, with "sane minimum" being the default. You can use custom values by simply defining the sample rate and number of simultaneous tones, instead of using one of the listed presets.
| Define | Sample Rate | Simultaneous tones |
| `AUDIO_DAC_QUALITY_VERY_LOW` | `11025U` | `8` |
| `AUDIO_DAC_QUALITY_LOW` | `22040U` | `4` |
| `AUDIO_DAC_QUALITY_HIGH` | `44100U` | `2` |
| `AUDIO_DAC_QUALITY_VERY_HIGH` | `88200U` | `1` |
| `AUDIO_DAC_QUALITY_SANE_MINIMUM` | `16384U` | `8` |
```c
/* zero crossing (or approach, whereas zero == DAC_OFF_VALUE, which can be configured to anything from 0 to DAC_SAMPLE_MAX)
* ============================*=*========================== AUDIO_DAC_SAMPLE_MAX
* * *
* * *
* ---------------------------------------------------------
* * * } AUDIO_DAC_SAMPLE_MAX/100
* --------------------------------------------------------- AUDIO_DAC_OFF_VALUE
* * * } AUDIO_DAC_SAMPLE_MAX/100
* ---------------------------------------------------------
* *
* * *
* * *
* =====*=*================================================= 0x0
*/
```
### PWM hardware :id=pwm-hardware
This driver uses the ChibiOS-PWM system to produce a square-wave on specific output pins that are connected to the PWM hardware.
The hardware directly toggles the pin via its alternate function. See your MCU's data-sheet for which pin can be driven by what timer - looking for TIMx_CHy and the corresponding alternate function.
A configuration example for the STM32F103C8 would be:
```c
//halconf.h:
#define HAL_USE_PWM TRUE
#define HAL_USE_PAL TRUE
#define HAL_USE_GPT TRUE
#include_next <halconf.h>
```
```c
// mcuconf.h:
#include_next <mcuconf.h>
#undef STM32_PWM_USE_TIM1
#define STM32_PWM_USE_TIM1 TRUE
#undef STM32_GPT_USE_TIM4
#define STM32_GPT_USE_TIM4 TRUE
```
If we now target pin A8, looking through the data-sheet of the STM32F103C8, for the timers and alternate functions
- TIM1_CH1 = PA8 <- alternate0
- TIM1_CH2 = PA9
- TIM1_CH3 = PA10
- TIM1_CH4 = PA11
with all this information, the configuration would contain these lines:
```c
//config.h:
#define AUDIO_PIN A8
#define AUDIO_PWM_DRIVER PWMD1
#define AUDIO_PWM_CHANNEL 1
#define AUDIO_STATE_TIMER GPTD4
```
ChibiOS uses GPIOv1 for the F103, which only knows of one alternate function.
On 'larger' STM32s, GPIOv2 or GPIOv3 are used; with them it is also necessary to configure `AUDIO_PWM_PAL_MODE` to the correct alternate function for the selected pin, timer and timer-channel.
### PWM software :id=pwm-software
This driver uses the PWM callbacks from PWMD1 with TIM1_CH1 to toggle the selected AUDIO_PIN in software.
During the same callback, with AUDIO_PIN_ALT_AS_NEGATIVE set, the AUDIO_PIN_ALT is toggled inversely to AUDIO_PIN. This is useful for setups that drive a piezo from two pins (instead of one and Gnd).
You can also change the timer used for software PWM by defining the driver. For instance:
```c
#define AUDIO_STATE_TIMER GPTD8
```
### Testing Notes :id=testing-notes
While not an exhaustive list, the following table provides the scenarios that have been partially validated:
| | DAC basic | DAC additive | PWM hardware | PWM software |
|--------------------------|--------------------|--------------------|--------------------|--------------------|
| Atmega32U4 | :o: | :o: | :heavy_check_mark: | :o: |
| STM32F103C8 (bluepill) | :x: | :x: | :heavy_check_mark: | :heavy_check_mark: |
| STM32F303CCT6 (proton-c) | :heavy_check_mark: | :heavy_check_mark: | ? | :heavy_check_mark: |
| STM32F405VG | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: | :heavy_check_mark: |
| L0xx | :x: (no Tim8) | ? | ? | ? |
:heavy_check_mark: : works and was tested
:o: : does not apply
:x: : not supported by MCU
*Other supported ChibiOS boards and/or pins may function, it will be highly chip and configuration dependent.*

View File

@ -1,121 +0,0 @@
# Breaking Changes
This document describes QMK's Breaking Change process. A Breaking Change is any change which modifies how QMK behaves in a way that in incompatible or potentially dangerous. We limit these changes so that users can have confidence that updating their QMK tree will not break their keymaps.
This also includes any keyboard moves within the repository.
The breaking change period is when we will merge PR's that change QMK in dangerous or unexpected ways. There is a built-in period of testing so we are confident that any problems caused are rare or unable to be predicted.
## What has been included in past Breaking Changes?
* [2022 Feb 26](ChangeLog/20220226.md)
* [2021 Nov 27](ChangeLog/20211127.md)
* [2021 Aug 28](ChangeLog/20210828.md)
* [2021 May 29](ChangeLog/20210529.md)
* [2021 Feb 27](ChangeLog/20210227.md)
* [2020 Nov 28](ChangeLog/20201128.md)
* [2020 Aug 29](ChangeLog/20200829.md)
* [2020 May 30](ChangeLog/20200530.md)
* [2020 Feb 29](ChangeLog/20200229.md)
* [2019 Aug 30](ChangeLog/20190830.md)
## When is the next Breaking Change?
The next Breaking Change is scheduled for May 28, 2022.
### Important Dates
* [x] 2022 Feb 26 - `develop` is tagged with a new release version. Each push to `master` is subsequently merged to `develop` by GitHub actions.
* [ ] 2022 Apr 31 - `develop` closed to new PR's.
* [ ] 2022 Apr 31 - Call for testers.
* [ ] 2022 May 14 - Last day for merges -- after this point `develop` is locked for testing and accepts only bugfixes
* [ ] 2022 May 26 - `master` is locked, no PR's merged.
* [ ] 2022 May 28 - Merge `develop` to `master`.
* [ ] 2022 May 28 - `master` is unlocked. PR's can be merged again.
## What changes will be included?
To see a list of breaking change candidates you can look at the [`breaking_change` label](https://github.com/qmk/qmk_firmware/pulls?q=is%3Aopen+label%3Abreaking_change+is%3Apr). New changes might be added between now and when `develop` is closed, and a PR with that label applied is not guaranteed to be merged.
If you want your breaking change to be included in this round you need to create a PR with the `breaking_change` label and have it accepted before `develop` closes. After `develop` closes no new breaking changes will be accepted.
Criteria for acceptance:
* The PR is complete and ready to merge
* The PR has a ChangeLog file describing the changes under `<qmk_firmware>/docs/Changelog/20220226`.
* This should be in Markdown format, with a name in the format `PR12345.md`, substituting the digits for your PR's ID.
* One strong recommendation that the ChangeLog document matches the PR description on GitHub, so as to ensure traceability.
# Checklists
This section documents various processes we use when running the Breaking Changes process.
## Creating the `develop` branch
This happens immediately after the previous `develop` branch is merged.
* `qmk_firmware` git commands
* [ ] `git checkout master`
* [ ] `git pull --ff-only`
* [ ] `git checkout -b develop`
* [ ] Edit `readme.md`
* [ ] Add a big notice at the top that this is a testing branch.
* [ ] Include a link to this document
* [ ] `git commit -m 'Branch point for <DATE> Breaking Change'`
* [ ] `git tag breakpoint_<YYYY>_<MM>_<DD>`
* [ ] `git tag <next_version>` # Prevent the breakpoint tag from confusing version incrementing
* [ ] `git push upstream develop`
* [ ] `git push --tags`
## 4 Weeks Before Merge
* `develop` is now closed to new PR's, only fixes for current PR's may be merged
* Post call for testers
* [ ] Discord
* [ ] GitHub PR
* [ ] https://reddit.com/r/olkb
## 2 Weeks Before Merge
* `develop` is now closed to existing PR merges, only bugfixes for previous merges may be included
* Post call for testers
* [ ] Discord
* [ ] GitHub PR
* [ ] https://reddit.com/r/olkb
## 1 Week Before Merge
* Announce that master will be closed from <2 Days Before> to <Day of Merge>
* [ ] Discord
* [ ] GitHub PR
* [ ] https://reddit.com/r/olkb
## 2 Days Before Merge
* Announce that master is closed for 2 days
* [ ] Discord
* [ ] GitHub PR
* [ ] https://reddit.com/r/olkb
## Day Of Merge
* `qmk_firmware` git commands
* [ ] `git checkout develop`
* [ ] `git pull --ff-only`
* [ ] Edit `readme.md`
* [ ] Remove the notes about `develop`
* [ ] Roll up the ChangeLog into one file.
* [ ] `git commit -m 'Merge point for <DATE> Breaking Change'`
* [ ] `git push upstream develop`
* GitHub Actions
* [ ] Create a PR for `develop`
* [ ] **Turn off 'Automatically delete head branches' for the repository** -- confirm with @qmk/directors that it is done before continuing
* `qmk_firmware` git commands
* [ ] `git checkout master`
* [ ] `git pull --ff-only`
* [ ] `git merge --no-ff develop`
* [ ] `git push upstream master`
## Post-merge operations
* (Optional) [update ChibiOS + ChibiOS-Contrib on `develop`](chibios_upgrade_instructions.md)

View File

@ -1,14 +0,0 @@
# Past Breaking Changes
This page links to all previous changelogs from the QMK Breaking Changes process.
* [2022 Feb 26](ChangeLog/20220226.md) - version 0.16.0
* [2021 Nov 27](ChangeLog/20211127.md) - version 0.15.0
* [2021 Aug 28](ChangeLog/20210828.md) - version 0.14.0
* [2021 May 29](ChangeLog/20210529.md) - version 0.13.0
* [2021 Feb 27](ChangeLog/20210227.md) - version 0.12.0
* [2020 Nov 28](ChangeLog/20201128.md) - version 0.11.0
* [2020 Aug 29](ChangeLog/20200829.md) - version 0.10.0
* [2020 May 30](ChangeLog/20200530.md) - version 0.9.0
* [2020 Feb 29](ChangeLog/20200229.md) - version 0.8.0
* [2019 Aug 30](ChangeLog/20190830.md) - version 0.7.0

View File

@ -1,42 +0,0 @@
# Breaking Changes: My Pull Request Was Flagged
A QMK member may have replied to your pull request stating that your submission is a breaking change. In their judgment, the changes you have proposed have greater implications for either QMK, or its users.
Some things that may cause a pull request to be flagged are:
- **Edits to User Keymaps**
A user may submit their keymap to QMK, then some time later open a pull request with further updates, only to find it can't be merged because it was edited in the `qmk/qmk_firmware` repository. As not all users are proficient at using Git or GitHub, the user may find themself unable to fix the issue on their own.
- **Changes to Expected Behavior**
Changes to QMK behavior may cause users to believe their hardware or QMK is broken if they flash new firmware that incorporates changes to existing QMK features, and find themselves without a means to restore the desired behavior.
- **Changes Requiring User Action**
Changes may also require action to be taken by users, such as updating a toolchain or taking some action in Git.
- **Changes Necessitating Increased Scrutiny**
On occasion, a submission may have implications for QMK as a project. This could be copyright/licensing issues, coding conventions, large feature overhauls, "high-risk" changes that need wider testing by our community, or something else entirely.
- **Changes Requiring Communication to End Users**
This includes warnings about future deprecations, outdated practices, and anything else that needs to be communicated but doesn't fit into one of the above categories.
## What Do I Do?
If it is determined that your submission is a breaking change, there are a few things you can do to smooth the process:
### Consider Splitting Up Your PR
If you are contributing core code, and the only reason it needs to go through breaking changes is that you are updating keymaps to match your change, consider whether you can submit your feature in a way that the old keymaps continue to work. Then submit a separate PR that goes through the breaking changes process to remove the old code.
### Contribute a ChangeLog Entry
We require submissions that go through the Breaking Change process to include a changelog entry. The entry should be a short summary of the changes your pull request makes &ndash; [each section here started as a changelog](ChangeLog/20190830.md "n.b. This should link to the 2019 Aug 30 Breaking Changes doc - @noroadsleft").
Your changelog should be located at `docs/ChangeLog/YYYYMMDD/PR####.md`, where `YYYYMMDD` is the date on which QMK's breaking change branch &ndash; usually named `develop` &ndash; will be merged into the `master` branch, and `####` is the number of your pull request.
If your submission requires action on the part of users, your changelog should instruct users what action(s) must be taken, or link to a location that does so.
### Document Your Changes
Understanding the purpose for your submission, and possible implications or actions it will require can make the review process more straightforward. A changelog may suffice for this purpose, but more extensive changes may require a level of detail that is ill-suited for a changelog.
Commenting on your pull request and being responsive to questions, comments, and change requests is much appreciated.
### Ask for Help
Having your submission flagged may have caught you off guard. If you find yourself intimidated or overwhelmed, let us know. Comment on your pull request, or [reach out to the QMK team on Discord](https://discord.gg/Uq7gcHh).

View File

@ -1,59 +0,0 @@
# ChibiOS Upgrade Procedure
ChibiOS and ChibiOS-Contrib need to be updated in tandem -- the latter has a branch tied to the ChibiOS version in use and should not be mixed with different versions.
## Getting ChibiOS
* `svn` Initialisation:
* Only needed to be done once
* You might need to separately install `git-svn` package in your OS's package manager
* `git svn init --stdlayout --prefix='svn/' http://svn.osdn.net/svnroot/chibios/`
* `git remote add qmk git@github.com:qmk/ChibiOS.git`
* Updating:
* `git svn fetch`
* First time around this will take several hours
* Subsequent updates will be incremental only
* Tagging example (work out which version first!):
* `git tag -a ver20.3.4 -m ver20.3.4 svn/tags/ver20.3.4`
* `git push qmk ver20.3.4`
* `git tag -a develop_YYYY_qN -m develop_YYYY_qN svn/tags/ver20.3.4`
* `git push qmk develop_YYYY_qN`
## Getting ChibiOS-Contrib
* `git` Initialisation:
* `git clone git@github.com:qmk/ChibiOS-Contrib`
* `git remote add upstream https://github.com/ChibiOS/ChibiOS-Contrib`
* `git checkout -b chibios-20.3.x upstream/chibios-20.3.x`
* Updating:
* `git fetch --all --tags --prune`
* `git checkout chibios-20.3.x`
* `git pull --ff-only`
* `git push origin chibios-20.3.x`
* `git tag -a develop_YYYY_qN -m develop_YYYY_qN chibios-20.3.x`
* `git push origin develop_YYYY_qN`
## Updating submodules
* Update the submodules
* `cd $QMK_FIRMWARE`
* `git checkout develop`
* `git pull --ff-only`
* `git checkout -b chibios-version-bump`
* `cd lib/chibios`
* `git fetch --all --tags --prune`
* `git checkout develop_YYYY_qN`
* `cd ../chibios-contrib`
* `git fetch --all --tags --prune`
* `git checkout develop_YYYY_qN`
* Update ChibiOS configs within QMK
* `cd $QMK_FIRMWARE`
* `./util/chibios_conf_updater.sh`
* Build everything
* `cd $QMK_FIRMWARE`
* `qmk multibuild -j4`
* Make sure there are no errors
* Push to the repo
* `git commit -am 'Update ChibiOS to 99.9.9'`
* `git push --set-upstream origin chibios-version-bump`
* Make a PR to qmk_firmware with the new branch

View File

@ -1,38 +0,0 @@
# QMK CLI :id=qmk-cli
## Overview :id=overview
The QMK CLI makes building and working with QMK keyboards easier. We have provided a number of commands to simplify and streamline tasks such as obtaining and compiling the QMK firmware, creating keymaps, and more.
### Requirements :id=requirements
QMK requires Python 3.6 or greater. We try to keep the number of requirements small but you will also need to install the packages listed in [`requirements.txt`](https://github.com/qmk/qmk_firmware/blob/master/requirements.txt). These are installed automatically when you install the QMK CLI.
### Install Using Homebrew (macOS, some Linux) :id=install-using-homebrew
If you have installed [Homebrew](https://brew.sh) you can tap and install QMK:
```
brew install qmk/qmk/qmk
export QMK_HOME='~/qmk_firmware' # Optional, set the location for `qmk_firmware`
qmk setup # This will clone `qmk/qmk_firmware` and optionally set up your build environment
```
### Install Using pip :id=install-using-easy_install-or-pip
If your system is not listed above you can install QMK manually. First ensure that you have Python 3.6 (or later) installed and have installed pip. Then install QMK with this command:
```
python3 -m pip install qmk
export QMK_HOME='~/qmk_firmware' # Optional, set the location for `qmk_firmware`
qmk setup # This will clone `qmk/qmk_firmware` and optionally set up your build environment
```
### Packaging For Other Operating Systems :id=packaging-for-other-operating-systems
We are looking for people to create and maintain a `qmk` package for more operating systems. If you would like to create a package for your OS please follow these guidelines:
* Follow best practices for your OS when they conflict with these guidelines
* Document why in a comment when you do deviate
* Install using a virtualenv
* Instruct the user to set the environment variable `QMK_HOME` to have the firmware source checked out somewhere other than `~/qmk_firmware`.

View File

@ -1,517 +0,0 @@
# QMK CLI Commands
# User Commands
## `qmk compile`
This command allows you to compile firmware from any directory. You can compile JSON exports from <https://config.qmk.fm>, compile keymaps in the repo, or compile the keyboard in the current working directory.
This command is directory aware. It will automatically fill in KEYBOARD and/or KEYMAP if you are in a keyboard or keymap directory.
**Usage for Configurator Exports**:
```
qmk compile [-c] <configuratorExport.json>
```
**Usage for Keymaps**:
```
qmk compile [-c] [-e <var>=<value>] [-j <num_jobs>] -kb <keyboard_name> -km <keymap_name>
```
**Usage in Keyboard Directory**:
Must be in keyboard directory with a default keymap, or in keymap directory for keyboard, or supply one with `--keymap <keymap_name>`
```
qmk compile
```
**Usage for building all keyboards that support a specific keymap**:
```
qmk compile -kb all -km <keymap_name>
```
**Example**:
```
$ qmk config compile.keymap=default
$ cd ~/qmk_firmware/keyboards/planck/rev6
$ qmk compile
Ψ Compiling keymap with make planck/rev6:default
...
```
or with optional keymap argument
```
$ cd ~/qmk_firmware/keyboards/clueboard/66/rev4
$ qmk compile -km 66_iso
Ψ Compiling keymap with make clueboard/66/rev4:66_iso
...
```
or in keymap directory
```
$ cd ~/qmk_firmware/keyboards/gh60/satan/keymaps/colemak
$ qmk compile
Ψ Compiling keymap with make gh60/satan:colemak
...
```
**Usage in Layout Directory**:
Must be under `qmk_firmware/layouts/`, and in a keymap folder.
```
qmk compile -kb <keyboard_name>
```
**Example**:
```
$ cd ~/qmk_firmware/layouts/community/60_ansi/mechmerlin-ansi
$ qmk compile -kb dz60
Ψ Compiling keymap with make dz60:mechmerlin-ansi
...
```
**Parallel Compilation**:
It is possible to speed up compilation by adding the `-j`/`--parallel` flag.
```
qmk compile -j <num_jobs> -kb <keyboard_name>
```
The `num_jobs` argument determines the maximum number of jobs that can be used. Setting it to zero will enable parallel compilation without limiting the maximum number of jobs.
```
qmk compile -j 0 -kb <keyboard_name>
```
## `qmk flash`
This command is similar to `qmk compile`, but can also target a bootloader. The bootloader is optional, and is set to `:flash` by default. To specify a different bootloader, use `-bl <bootloader>`. Visit the [Flashing Firmware](flashing.md) guide for more details of the available bootloaders.
This command is directory aware. It will automatically fill in KEYBOARD and/or KEYMAP if you are in a keyboard or keymap directory.
**Usage for Configurator Exports**:
```
qmk flash [-bl <bootloader>] [-c] [-e <var>=<value>] [-j <num_jobs>] <configuratorExport.json>
```
**Usage for Keymaps**:
```
qmk flash -kb <keyboard_name> -km <keymap_name> [-bl <bootloader>] [-c] [-e <var>=<value>] [-j <num_jobs>]
```
**Listing the Bootloaders**
```
qmk flash -b
```
## `qmk config`
This command lets you configure the behavior of QMK. For the full `qmk config` documentation see [CLI Configuration](cli_configuration.md).
**Usage**:
```
qmk config [-ro] [config_token1] [config_token2] [...] [config_tokenN]
```
## `qmk cd`
This command opens a new shell in your `qmk_firmware` directory.
Note that if you are already somewhere within `QMK_HOME` (for example, the `keyboards/` folder), nothing will happen.
To exit out into the parent shell, simply type `exit`.
**Usage**:
```
qmk cd
```
## `qmk console`
This command lets you connect to keyboard consoles to get debugging messages. It only works if your keyboard firmware has been compiled with `CONSOLE_ENABLE=yes`.
**Usage**:
```
qmk console [-d <pid>:<vid>[:<index>]] [-l] [-n] [-t] [-w <seconds>]
```
**Examples**:
Connect to all available keyboards and show their console messages:
```
qmk console
```
List all devices:
```
qmk console -l
```
Show only messages from clueboard/66/rev3 keyboards:
```
qmk console -d C1ED:2370
```
Show only messages from the second clueboard/66/rev3:
```
qmk console -d C1ED:2370:2
```
Show timestamps and VID:PID instead of names:
```
qmk console -n -t
```
Disable bootloader messages:
```
qmk console --no-bootloaders
```
## `qmk doctor`
This command examines your environment and alerts you to potential build or flash problems. It can fix many of them if you want it to.
**Usage**:
```
qmk doctor [-y] [-n]
```
**Examples**:
Check your environment for problems and prompt to fix them:
qmk doctor
Check your environment and automatically fix any problems found:
qmk doctor -y
Check your environment and report problems only:
qmk doctor -n
## `qmk format-json`
Formats a JSON file in a (mostly) human-friendly way. Will usually correctly detect the format of the JSON (info.json or keymap.json) but you can override this with `--format` if neccesary.
**Usage**:
```
qmk format-json [-f FORMAT] <json_file>
```
## `qmk info`
Displays information about keyboards and keymaps in QMK. You can use this to get information about a keyboard, show the layouts, display the underlying key matrix, or to pretty-print JSON keymaps.
**Usage**:
```
qmk info [-f FORMAT] [-m] [-l] [-km KEYMAP] [-kb KEYBOARD]
```
This command is directory aware. It will automatically fill in KEYBOARD and/or KEYMAP if you are in a keyboard or keymap directory.
**Examples**:
Show basic information for a keyboard:
qmk info -kb planck/rev5
Show the matrix for a keyboard:
qmk info -kb ergodox_ez -m
Show a JSON keymap for a keyboard:
qmk info -kb clueboard/california -km default
## `qmk json2c`
Creates a keymap.c from a QMK Configurator export.
**Usage**:
```
qmk json2c [-o OUTPUT] filename
```
## `qmk c2json`
Creates a keymap.json from a keymap.c.
**Note:** Parsing C source files is not easy, therefore this subcommand may not work with your keymap. In some cases not using the C pre-processor helps.
**Usage**:
```
qmk c2json -km KEYMAP -kb KEYBOARD [-q] [--no-cpp] [-o OUTPUT] filename
```
## `qmk lint`
Checks over a keyboard and/or keymap and highlights common errors, problems, and anti-patterns.
**Usage**:
```
qmk lint [-km KEYMAP] [-kb KEYBOARD] [--strict]
```
This command is directory aware. It will automatically fill in KEYBOARD and/or KEYMAP if you are in a keyboard or keymap directory.
**Examples**:
Do a basic lint check:
qmk lint -kb rominronin/katana60/rev2
## `qmk list-keyboards`
This command lists all the keyboards currently defined in `qmk_firmware`
**Usage**:
```
qmk list-keyboards
```
## `qmk list-keymaps`
This command lists all the keymaps for a specified keyboard (and revision).
This command is directory aware. It will automatically fill in KEYBOARD if you are in a keyboard directory.
**Usage**:
```
qmk list-keymaps -kb planck/ez
```
## `qmk new-keyboard`
This command creates a new keyboard based on available templates.
Any arguments that are not provided will prompt for input. If `-u` is not passed and `user.name` is set in .gitconfig, it will be used as the default username in the prompt.
**Usage**:
```
qmk new-keyboard [-kb KEYBOARD] [-t {atmega32u4,STM32F303,etc}] [-l {60_ansi,75_iso,etc}] -u USERNAME
```
## `qmk new-keymap`
This command creates a new keymap based on a keyboard's existing default keymap.
This command is directory aware. It will automatically fill in KEYBOARD and/or KEYMAP if you are in a keyboard or keymap directory.
**Usage**:
```
qmk new-keymap [-kb KEYBOARD] [-km KEYMAP]
```
## `qmk clean`
This command cleans up the `.build` folder. If `--all` is passed, any .hex or .bin files present in the `qmk_firmware` directory will also be deleted.
**Usage**:
```
qmk clean [-a]
```
## `qmk via2json`
This command an generate a keymap.json from a VIA keymap backup. Both the layers and the macros are converted, enabling users to easily move away from a VIA-enabled firmware without writing any code or reimplementing their keymaps in QMK Configurator.
**Usage**:
```
qmk via2json -kb KEYBOARD [-l LAYOUT] [-km KEYMAP] [-o OUTPUT] filename
```
**Example:**
```
$ qmk via2json -kb ai03/polaris -o polaris_keymap.json polaris_via_backup.json
Ψ Wrote keymap to /home/you/qmk_firmware/polaris_keymap.json
```
---
# Developer Commands
## `qmk format-text`
This command formats text files to have proper line endings.
Every text file in the repository needs to have Unix (LF) line ending.
If you are working on **Windows**, you must ensure that line endings are corrected in order to get your PRs merged.
```
qmk format-text
```
## `qmk format-c`
This command formats C code using clang-format.
Run it with no arguments to format all core code that has been changed. Default checks `origin/master` with `git diff`, branch can be changed using `-b <branch_name>`
Run it with `-a` to format all core code, or pass filenames on the command line to run it on specific files.
**Usage for specified files**:
```
qmk format-c [file1] [file2] [...] [fileN]
```
**Usage for all core files**:
```
qmk format-c -a
```
**Usage for only changed files against origin/master**:
```
qmk format-c
```
**Usage for only changed files against branch_name**:
```
qmk format-c -b branch_name
```
## `qmk generate-compilation-database`
**Usage**:
```
qmk generate-compilation-database [-kb KEYBOARD] [-km KEYMAP]
```
Creates a `compile_commands.json` file.
Does your IDE/editor use a language server but doesn't _quite_ find all the necessary include files? Do you hate red squigglies? Do you wish your editor could figure out `#include QMK_KEYBOARD_H`? You might need a [compilation database](https://clang.llvm.org/docs/JSONCompilationDatabase.html)! The qmk tool can build this for you.
This command needs to know which keyboard and keymap to build. It uses the same configuration options as the `qmk compile` command: arguments, current directory, and config files.
**Example:**
```
$ cd ~/qmk_firmware/keyboards/gh60/satan/keymaps/colemak
$ qmk generate-compilation-database
Ψ Making clean
Ψ Gathering build instructions from make -n gh60/satan:colemak
Ψ Found 50 compile commands
Ψ Writing build database to /Users/you/src/qmk_firmware/compile_commands.json
```
Now open your dev environment and live a squiggly-free life.
## `qmk docs`
This command starts a local HTTP server which you can use for browsing or improving the docs. Default port is 8936.
Use the `-b`/`--browser` flag to automatically open the local webserver in your default browser.
This command runs `docsify serve` if `docsify-cli` is installed (which provides live reload), otherwise Python's builtin HTTP server module will be used.
**Usage**:
```
qmk docs [-b] [-p PORT]
```
## `qmk generate-docs`
This command allows you to generate QMK documentation locally. It can be uses for general browsing or improving the docs. External tools such as [serve](https://www.npmjs.com/package/serve) can be used to browse the generated files.
**Usage**:
```
qmk generate-docs
```
## `qmk generate-rgb-breathe-table`
This command generates a lookup table (LUT) header file for the [RGB Lighting](feature_rgblight.md) feature's breathing animation. Place this file in your keyboard or keymap directory as `rgblight_breathe_table.h` to override the default LUT in `quantum/rgblight/`.
**Usage**:
```
qmk generate-rgb-breathe-table [-q] [-o OUTPUT] [-m MAX] [-c CENTER]
```
## `qmk kle2json`
This command allows you to convert from raw KLE data to QMK Configurator JSON. It accepts either an absolute file path, or a file name in the current directory. By default it will not overwrite `info.json` if it is already present. Use the `-f` or `--force` flag to overwrite.
**Usage**:
```
qmk kle2json [-f] <filename>
```
**Examples**:
```
$ qmk kle2json kle.txt
☒ File info.json already exists, use -f or --force to overwrite.
```
```
$ qmk kle2json -f kle.txt -f
Ψ Wrote out to info.json
```
## `qmk format-python`
This command formats python code in `qmk_firmware`.
**Usage**:
```
qmk format-python
```
## `qmk pytest`
This command runs the python test suite. If you make changes to python code you should ensure this runs successfully.
**Usage**:
```
qmk pytest [-t TEST]
```
**Examples**:
Run entire test suite:
qmk pytest
Run test group:
qmk pytest -t qmk.tests.test_cli_commands
Run single test:
qmk pytest -t qmk.tests.test_cli_commands.test_c2json
qmk pytest -t qmk.tests.test_qmk_path

View File

@ -1,121 +0,0 @@
# QMK CLI Configuration
This document explains how `qmk config` works.
# Introduction
Configuration for the QMK CLI is a key/value system. Each key consists of a subcommand and an argument name separated by a period. This allows for a straightforward and direct translation between config keys and the arguments they set.
## Simple Example
As an example let's look at the command `qmk compile --keyboard clueboard/66/rev4 --keymap default`.
There are two command line arguments that could be read from configuration instead:
* `compile.keyboard`
* `compile.keymap`
Let's set these now:
```
$ qmk config compile.keyboard=clueboard/66/rev4 compile.keymap=default
compile.keyboard: None -> clueboard/66/rev4
compile.keymap: None -> default
Ψ Wrote configuration to '/Users/example/Library/Application Support/qmk/qmk.ini'
```
Now I can run `qmk compile` without specifying my keyboard and keymap each time.
## Setting User Defaults
Sometimes you want to share a setting between multiple commands. For example, multiple commands take the argument `--keyboard`. Rather than setting this value for every command you can set a user value which will be used by any command that takes that argument.
Example:
```
$ qmk config user.keyboard=clueboard/66/rev4 user.keymap=default
user.keyboard: None -> clueboard/66/rev4
user.keymap: None -> default
Ψ Wrote configuration to '/Users/example/Library/Application Support/qmk/qmk.ini'
```
# CLI Documentation (`qmk config`)
The `qmk config` command is used to interact with the underlying configuration. When run with no argument it shows the current configuration. When arguments are supplied they are assumed to be configuration tokens, which are strings containing no spaces with the following form:
<subcommand|general|default>[.<key>][=<value>]
## Setting Configuration Values
You can set configuration values by putting an equal sign (=) into your config key. The key must always be the full `<section>.<key>` form.
Example:
```
$ qmk config default.keymap=default
default.keymap: None -> default
Ψ Wrote configuration to '/Users/example/Library/Application Support/qmk/qmk.ini'
```
## Reading Configuration Values
You can read configuration values for the entire configuration, a single key, or for an entire section. You can also specify multiple keys to display more than one value.
### Entire Configuration Example
qmk config
### Whole Section Example
qmk config compile
### Single Key Example
qmk config compile.keyboard
### Multiple Keys Example
qmk config user compile.keyboard compile.keymap
## Deleting Configuration Values
You can delete a configuration value by setting it to the special string `None`.
Example:
```
$ qmk config default.keymap=None
default.keymap: default -> None
Ψ Wrote configuration to '/Users/example/Library/Application Support/qmk/qmk.ini'
```
## Multiple Operations
You can combine multiple read and write operations into a single command. They will be executed and displayed in order:
```
$ qmk config compile default.keymap=default compile.keymap=None
compile.keymap=skully
compile.keyboard=clueboard/66_hotswap/gen1
default.keymap: None -> default
compile.keymap: skully -> None
Ψ Wrote configuration to '/Users/example/Library/Application Support/qmk/qmk.ini'
```
# User Configuration Options
| Key | Default Value | Description |
|-----|---------------|-------------|
| user.keyboard | None | The keyboard path (Example: `clueboard/66/rev4`) |
| user.keymap | None | The keymap name (Example: `default`) |
| user.name | None | The user's GitHub username. |
# All Configuration Options
| Key | Default Value | Description |
|-----|---------------|-------------|
| compile.keyboard | None | The keyboard path (Example: `clueboard/66/rev4`) |
| compile.keymap | None | The keymap name (Example: `default`) |
| hello.name | None | The name to greet when run. |
| new_keyboard.keyboard | None | The keyboard path (Example: `clueboard/66/rev4`) |
| new_keyboard.keymap | None | The keymap name (Example: `default`) |

View File

@ -1,219 +0,0 @@
# QMK CLI Development
This document has useful information for developers wishing to write new `qmk` subcommands.
# Overview
The QMK CLI operates using the subcommand pattern made famous by git. The main `qmk` script is simply there to setup the environment and pick the correct entrypoint to run. Each subcommand is a self-contained module with an entrypoint (decorated by `@cli.subcommand()`) that performs some action and returns a shell returncode, or None.
## Developer mode:
If you intend to maintain keyboards and/or contribute to QMK, you can enable the CLI's "Developer" mode:
`qmk config user.developer=True`
This will allow you to see all available subcommands.
**Note:** You will have to install additional requirements:
```
python3 -m pip install -r requirements-dev.txt
```
# Subcommands
[MILC](https://github.com/clueboard/milc) is the CLI framework `qmk` uses to handle argument parsing, configuration, logging, and many other features. It lets you focus on writing your tool without wasting your time writing glue code.
Subcommands in the local CLI are always found in `qmk_firmware/lib/python/qmk/cli`.
Let's start by looking at an example subcommand. This is `lib/python/qmk/cli/hello.py`:
```python
"""QMK Python Hello World
This is an example QMK CLI script.
"""
from milc import cli
@cli.argument('-n', '--name', default='World', help='Name to greet.')
@cli.subcommand('QMK Hello World.')
def hello(cli):
"""Log a friendly greeting.
"""
cli.log.info('Hello, %s!', cli.config.hello.name)
```
First we import the `cli` object from `milc`. This is how we interact with the user and control the script's behavior. We use `@cli.argument()` to define a command line flag, `--name`. This also creates a configuration variable named `hello.name` (and the corresponding `user.name`) which the user can set so they don't have to specify the argument. The `cli.subcommand()` decorator designates this function as a subcommand. The name of the subcommand will be taken from the name of the function.
Once inside our function we find a typical "Hello, World!" program. We use `cli.log` to access the underlying [Logger Object](https://docs.python.org/3.6/library/logging.html#logger-objects), whose behavior is user controllable. We also access the value for name supplied by the user as `cli.config.hello.name`. The value for `cli.config.hello.name` will be determined by looking at the `--name` argument supplied by the user, if not provided it will use the value in the `qmk.ini` config file, and if neither of those is provided it will fall back to the default supplied in the `cli.argument()` decorator.
# User Interaction
MILC and the QMK CLI have several nice tools for interacting with the user. Using these standard tools will allow you to colorize your text for easier interactions, and allow the user to control when and how that information is displayed and stored.
## Printing Text
There are two main methods for outputting text in a subcommand- `cli.log` and `cli.echo()`. They operate in similar ways but you should prefer to use `cli.log.info()` for most general purpose printing.
You can use special tokens to colorize your text, to make it easier to understand the output of your program. See [Colorizing Text](#colorizing-text) below.
Both of these methods support built-in string formatting using python's [printf style string format operations](https://docs.python.org/3.6/library/stdtypes.html#old-string-formatting). You can use tokens such as `%s` and `%d` within your text strings then pass the values as arguments. See our Hello, World program above for an example.
You should never use the format operator (`%`) directly, always pass values as arguments.
### Logging (`cli.log`)
The `cli.log` object gives you access to a [Logger Object](https://docs.python.org/3.6/library/logging.html#logger-objects). We have configured our log output to show the user a nice emoji for each log level (or the log level name if their terminal does not support unicode.) This way the user can tell at a glance which messages are most important when something goes wrong.
The default log level is `INFO`. If the user runs `qmk -v <subcommand>` the default log level will be set to `DEBUG`.
| Function | Emoji |
|----------|-------|
| cli.log.critical | `{bg_red}{fg_white}¬_¬{style_reset_all}` |
| cli.log.error | `{fg_red}☒{style_reset_all}` |
| cli.log.warning | `{fg_yellow}⚠{style_reset_all}` |
| cli.log.info | `{fg_blue}Ψ{style_reset_all}` |
| cli.log.debug | `{fg_cyan}☐{style_reset_all}` |
| cli.log.notset | `{style_reset_all}¯\\_(o_o)_/¯` |
### Printing (`cli.echo`)
Sometimes you simply need to print text outside of the log system. This is appropriate if you are outputting fixed data or writing out something that should never be logged. Most of the time you should prefer `cli.log.info()` over `cli.echo`.
### Colorizing Text
You can colorize the output of your text by including color tokens within text. Use color to highlight, not to convey information. Remember that the user can disable color, and your subcommand should still be usable if they do.
You should generally avoid setting the background color, unless it's integral to what you are doing. Remember that users have a lot of preferences when it comes to their terminal color, so you should pick colors that work well against both black and white backgrounds.
Colors prefixed with 'fg' will affect the foreground (text) color. Colors prefixed with 'bg' will affect the background color.
| Color | Background | Extended Background | Foreground | Extended Foreground|
|-------|------------|---------------------|------------|--------------------|
| Black | {bg_black} | {bg_lightblack_ex} | {fg_black} | {fg_lightblack_ex} |
| Blue | {bg_blue} | {bg_lightblue_ex} | {fg_blue} | {fg_lightblue_ex} |
| Cyan | {bg_cyan} | {bg_lightcyan_ex} | {fg_cyan} | {fg_lightcyan_ex} |
| Green | {bg_green} | {bg_lightgreen_ex} | {fg_green} | {fg_lightgreen_ex} |
| Magenta | {bg_magenta} | {bg_lightmagenta_ex} | {fg_magenta} | {fg_lightmagenta_ex} |
| Red | {bg_red} | {bg_lightred_ex} | {fg_red} | {fg_lightred_ex} |
| White | {bg_white} | {bg_lightwhite_ex} | {fg_white} | {fg_lightwhite_ex} |
| Yellow | {bg_yellow} | {bg_lightyellow_ex} | {fg_yellow} | {fg_lightyellow_ex} |
There are also control sequences that can be used to change the behavior of
ANSI output:
| Control Sequences | Description |
|-------------------|-------------|
| {style_bright} | Make the text brighter |
| {style_dim} | Make the text dimmer |
| {style_normal} | Make the text normal (neither `{style_bright}` nor `{style_dim}`) |
| {style_reset_all} | Reset all text attributes to default. (This is automatically added to the end of every string.) |
| {bg_reset} | Reset the background color to the user's default |
| {fg_reset} | Reset the foreground color to the user's default |
# Arguments and Configuration
QMK handles the details of argument parsing and configuration for you. When you add a new argument it is automatically incorporated into the config tree based on your subcommand's name and the long name of the argument. You can access this configuration in `cli.config`, using either attribute-style access (`cli.config.<subcommand>.<argument>`) or dictionary-style access (`cli.config['<subcommand>']['<argument>']`).
Under the hood QMK uses [ConfigParser](https://docs.python.org/3/library/configparser.html) to store configurations. This gives us an easy and straightforward way to represent the configuration in a human-editable way. We have wrapped access to this configuration to provide some nicities that ConfigParser does not normally have.
## Reading Configuration Values
You can interact with `cli.config` in all the ways you'd normally expect. For example the `qmk compile` command gets the keyboard name from `cli.config.compile.keyboard`. It does not need to know whether that value came from the command line, an environment variable, or the configuration file.
Iteration is also supported:
```
for section in cli.config:
for key in cli.config[section]:
cli.log.info('%s.%s: %s', section, key, cli.config[section][key])
```
## Setting Configuration Values
You can set configuration values in the usual ways.
Dictionary style:
```
cli.config['<section>']['<key>'] = <value>
```
Attribute style:
```
cli.config.<section>.<key> = <value>
```
## Deleting Configuration Values
You can delete configuration values in the usual ways.
Dictionary style:
```
del(cli.config['<section>']['<key>'])
```
Attribute style:
```
del(cli.config.<section>.<key>)
```
## Writing The Configuration File
The configuration is not written out when it is changed. Most commands do not need to do this. We prefer to have the user change their configuration deliberitely using `qmk config`.
You can use `cli.save_config()` to write out the configuration.
## Excluding Arguments From Configuration
Some arguments should not be propagated to the configuration file. These can be excluded by adding `arg_only=True` when creating the argument.
Example:
```
@cli.argument('-o', '--output', arg_only=True, help='File to write to')
@cli.argument('filename', arg_only=True, help='Configurator JSON file')
@cli.subcommand('Create a keymap.c from a QMK Configurator export.')
def json_keymap(cli):
pass
```
You will only be able to access these arguments using `cli.args`. For example:
```
cli.log.info('Reading from %s and writing to %s', cli.args.filename, cli.args.output)
```
# Testing, and Linting, and Formatting (oh my!)
We use nose2, flake8, and yapf to test, lint, and format code. You can use the `pytest` and `format-python` subcommands to run these tests:
### Testing and Linting
qmk pytest
### Formatting
qmk format-python
## Formatting Details
We use [yapf](https://github.com/google/yapf) to automatically format code. Our configuration is in the `[yapf]` section of `setup.cfg`.
?> Tip- Many editors can use yapf as a plugin to automatically format code as you type.
## Testing Details
Our tests can be found in `lib/python/qmk/tests/`. You will find both unit and integration tests in this directory. We hope you will write both unit and integration tests for your code, but if you do not please favor integration tests.
If your PR does not include a comprehensive set of tests please add comments like this to your code so that other people know where they can help:
# TODO(unassigned/<your_github_username>): Write <unit|integration> tests
We use [nose2](https://nose2.readthedocs.io/en/latest/getting_started.html) to run our tests. You can refer to the nose2 documentation for more details on what you can do in your test functions.
## Linting Details
We use flake8 to lint our code. Your code should pass flake8 before you open a PR. This will be checked when you run `qmk pytest` and by CI when you submit a PR.

View File

@ -1,27 +0,0 @@
# Tab Completion for QMK
If you are using Bash 4.2 or later, Zsh, or FiSH you can enable Tab Completion for the QMK CLI. This will let you tab complete the names of flags, keyboards, files, and other `qmk` options.
## Setup
There are several ways you can setup tab completion.
### For Your User Only
Add this to the end of your `.profile` or `.bashrc`:
source ~/qmk_firmware/util/qmk_tab_complete.sh
If you put `qmk_firmware` into another location you will need to adjust this path.
### System Wide Symlink
If you want the tab completion available to all users of the system you can add a symlink to the `qmk_tab_complete.sh` script:
ln -s ~/qmk_firmware/util/qmk_tab_complete.sh /etc/profile.d/qmk_tab_complete.sh
### System Wide Copy
In some cases a symlink may not work. Instead you can copy the file directly into place. Be aware that updates to the tab complete script may happen from time to time, you will want to recopy the file periodically.
cp util/qmk_tab_complete.sh /etc/profile.d

View File

@ -1,58 +0,0 @@
# Coding Conventions (C)
Most of our style is pretty easy to pick up on, but right now it's not entirely consistent. You should match the style of the code surrounding your change, but if that code is inconsistent or unclear use the following guidelines:
* We indent using four (4) spaces (soft tabs)
* We use a modified One True Brace Style
* Opening Brace: At the end of the same line as the statement that opens the block
* Closing Brace: Lined up with the first character of the statement that opens the block
* Else If: Place the closing brace at the beginning of the line and the next opening brace at the end of the same line.
* Optional Braces: Always include optional braces.
* Good: if (condition) { return false; }
* Bad: if (condition) return false;
* We encourage use of C style comments: `/* */`
* Think of them as a story describing the feature
* Use them liberally to explain why particular decisions were made.
* Do not write obvious comments
* If you're not sure if a comment is obvious, go ahead and include it.
* In general we don't wrap lines, they can be as long as needed. If you do choose to wrap lines please do not wrap any wider than 76 columns.
* We use `#pragma once` at the start of header files rather than old-style include guards (`#ifndef THIS_FILE_H`, `#define THIS_FILE_H`, ..., `#endif`)
* We accept both forms of preprocessor if's: `#ifdef DEFINED` and `#if defined(DEFINED)`
* If you are not sure which to prefer use the `#if defined(DEFINED)` form.
* Do not change existing code from one style to the other, except when moving to a multiple condition `#if`.
* When deciding how (or if) to indent preprocessor directives, keep these points in mind:
* Readability is more important than consistency.
* Follow the file's existing style. If the file is mixed, follow the style that makes sense for the section you are modifying.
* When indenting, keep the hash at the start of the line and add whitespace between `#` and `if`, starting with 4 spaces after the `#`.
* You can follow the indention level of the surrounding C code, or preprocessor directives can have their own indentation levels. Choose the style that best communicates the intent of your code.
Here is an example for easy reference:
```c
/* Enums for foo */
enum foo_state {
FOO_BAR,
FOO_BAZ,
};
/* Returns a value */
int foo(void) {
if (some_condition) {
return FOO_BAR;
} else {
return -1;
}
}
```
# Auto-formatting with clang-format
[Clang-format](https://clang.llvm.org/docs/ClangFormat.html) is part of LLVM and can automatically format your code for you, because ain't nobody got time to do it manually. We supply a configuration file for it that applies most of the coding conventions listed above. It will only change whitespace and newlines, so you will still have to remember to include optional braces yourself.
Use the [full LLVM installer](https://llvm.org/builds/) to get clang-format on Windows, or use `sudo apt install clang-format` on Ubuntu.
If you run it from the command-line, pass `-style=file` as an option and it will automatically find the .clang-format configuration file in the QMK root directory.
If you use VSCode, the standard C/C++ plugin supports clang-format, alternatively there is a [separate extension](https://marketplace.visualstudio.com/items?itemName=LLVMExtensions.ClangFormat) for it.
Some things (like LAYOUT macros) are destroyed by clang-format, so either don't run it on those files, or wrap the sensitive code in `// clang-format off` and `// clang-format on`.

View File

@ -1,326 +0,0 @@
# Coding Conventions (Python)
Most of our style follows PEP8 with some local modifications to make things less nit-picky.
* We target Python 3.7 for compatability with all supported platforms.
* We indent using four (4) spaces (soft tabs)
* We encourage liberal use of comments
* Think of them as a story describing the feature
* Use them liberally to explain why particular decisions were made.
* Do not write obvious comments
* If you're not sure if a comment is obvious, go ahead and include it.
* We require useful docstrings for all functions.
* In general we don't wrap lines, they can be as long as needed. If you do choose to wrap lines please do not wrap any wider than 76 columns.
* Some of our practices conflict with the wider python community to make our codebase more approachable to non-pythonistas.
# YAPF
You can use [yapf](https://github.com/google/yapf) to style your code. We provide a config in [setup.cfg](setup.cfg).
# Imports
We don't have a hard and fast rule for when to use `import ...` vs `from ... import ...`. Understandability and maintainability is our ultimate goal.
Generally we prefer to import specific function and class names from a module to keep code shorter and easier to understand. Sometimes this results in a name that is ambiguous, and in such cases we prefer to import the module instead. You should avoid using the "as" keyword when importing, unless you are importing a compatability module.
Imports should be one line per module. We group import statements together using the standard python rules- system, 3rd party, local.
Do not use `from foo import *`. Supply a list of objects you want to import instead, or import the whole module.
## Import Examples
Good:
```
from qmk import effects
effects.echo()
```
Bad:
```
from qmk.effects import echo
echo() # It's unclear where echo comes from
```
Good:
```
from qmk.keymap import compile_firmware
compile_firmware()
```
OK, but the above is better:
```
import qmk.keymap
qmk.keymap.compile_firmware()
```
# Statements
One statement per line.
Even when allowed (EG `if foo: bar`) we do not combine 2 statements onto a single line.
# Naming
`module_name`, `package_name`, `ClassName`, `method_name`, `ExceptionName`, `function_name`, `GLOBAL_CONSTANT_NAME`, `global_var_name`, `instance_var_name`, `function_parameter_name`, `local_var_name`.
Function names, variable names, and filenames should be descriptive; eschew abbreviation. In particular, do not use abbreviations that are ambiguous or unfamiliar to readers outside your project, and do not abbreviate by deleting letters within a word.
Always use a .py filename extension. Never use dashes.
## Names to Avoid
* single character names except for counters or iterators. You may use `e` as an exception identifier in try/except statements.
* dashes (`-`) in any package/module name
* `__double_leading_and_trailing_underscore__` names (reserved by Python)
# Docstrings
To maintain consistency with our docstrings we've set out the following guidelines.
* Use markdown formatting
* Always use triple-dquote docstrings with at least one linebreak: `"""\n"""`
* First line is a short (< 70 char) description of what the function does
* If you need more in your docstring leave a blank line between the description and the rest.
* Start indented lines at the same indent level as the opening triple-dquote
* Document all function arguments using the format described below
* If present, Args:, Returns:, and Raises: should be the last three things in the docstring, separated by a blank line each.
## Simple docstring example
```
def my_awesome_function():
"""Return the number of seconds since 1970 Jan 1 00:00 UTC.
"""
return int(time.time())
```
## Complex docstring example
```
def my_awesome_function():
"""Return the number of seconds since 1970 Jan 1 00:00 UTC.
This function always returns an integer number of seconds.
"""
return int(time.time())
```
## Function arguments docstring example
```
def my_awesome_function(start=None, offset=0):
"""Return the number of seconds since 1970 Jan 1 00:00 UTC.
This function always returns an integer number of seconds.
Args:
start
The time to start at instead of 1970 Jan 1 00:00 UTC
offset
Return an answer that has this number of seconds subtracted first
Returns:
An integer describing a number of seconds.
Raises:
ValueError
When `start` or `offset` are not positive numbers
"""
if start < 0 or offset < 0:
raise ValueError('start and offset must be positive numbers.')
if not start:
start = time.time()
return int(start - offset)
```
# Exceptions
Exceptions are used to handle exceptional situations. They should not be used for flow control. This is a break from the python norm of "ask for forgiveness." If you are catching an exception it should be to handle a situation that is unusual.
If you use a catch-all exception for any reason you must log the exception and stacktrace using cli.log.
Make your try/except blocks as short as possible. If you need a lot of try statements you may need to restructure your code.
# Tuples
When defining one-item tuples always include a trailing comma so that it is obvious you are using a tuple. Do not rely on implicit one-item tuple unpacking. Better still use a list which is unambiguous.
This is particularly important when using the printf-style format strings that are commonly used.
# Lists and Dictionaries
We have configured YAPF to differentiate between sequence styles with a trailing comma. When a trailing comma is omitted YAPF will format the sequence as a single line. When a trailing comma is included YAPF will format the sequence with one item per line.
You should generally prefer to keep short definition on a single line. Break out to multiple lines sooner rather than later to aid readability and maintainability.
# Parentheses
Avoid excessive parentheses, but do use parentheses to make code easier to understand. Do not use them in return statements unless you are explicitly returning a tuple, or it is part of a math expression.
# Format Strings
We generally prefer printf-style format strings. Example:
```
name = 'World'
print('Hello, %s!' % (name,))
```
This style is used by the logging module, which we make use of extensively, and we have adopted it in other places for consistency. It is also more familiar to C programmers, who are a big part of our casual audience.
Our included CLI module has support for using these without using the percent (%) operator. Look at `cli.echo()` and the various `cli.log` functions (EG, `cli.log.info()`) for more details.
# Comprehensions & Generator Expressions
We encourage the liberal use of comprehensions and generators, but do not let them get too complex. If you need complexity fall back to a for loop that is easier to understand.
# Lambdas
OK to use but probably should be avoided. With comprehensions and generators the need for lambdas is not as strong as it once was.
# Conditional Expressions
OK in variable assignment, but otherwise should be avoided.
Conditional expressions are if statements that are in line with code. For example:
```
x = 1 if cond else 2
```
It's generally not a good idea to use these as function arguments, sequence items, etc. It's too easy to overlook.
# Default Argument Values
Encouraged, but values must be immutable objects.
When specifying default values in argument lists always be careful to specify objects that can't be modified in place. If you use a mutable object the changes you make will persist between calls, which is usually not what you want. Even if that is what you intend to do it is confusing for others and will hinder understanding.
Bad:
```
def my_func(foo={}):
pass
```
Good:
```
def my_func(foo=None):
if not foo:
foo = {}
```
# Properties
Always use properties instead of getter and setter functions.
```
class Foo(object):
def __init__(self):
self._bar = None
@property
def bar(self):
return self._bar
@bar.setter
def bar(self, bar):
self._bar = bar
```
# True/False Evaluations
You should generally prefer the implicit True/False evaluation in if statements, rather than checking equivalency.
Bad:
```
if foo == True:
pass
if bar == False:
pass
```
Good:
```
if foo:
pass
if not bar:
pass
```
# Decorators
Use when appropriate. Try to avoid too much magic unless it helps with understanding.
# Threading and Multiprocessing
Should be avoided. If you need this you will have to make a strong case before we merge your code.
# Power Features
Python is an extremely flexible language and gives you many fancy features such as custom metaclasses, access to bytecode, on-the-fly compilation, dynamic inheritance, object reparenting, import hacks, reflection, modification of system internals, etc.
Don't use these.
Performance is not a critical concern for us, and code understandability is. We want our codebase to be approachable by someone who only has a day or two to play with it. These features generally come with a cost to easy understanding, and we would prefer to have code that can be readily understood over faster or more compact code.
Note that some standard library modules use these techniques and it is ok to make use of those modules. But please keep readability and understandability in mind when using them.
# Type Annotated Code
For now we are not using any type annotation system, and would prefer that code remain unannotated. We may revisit this in the future.
# Function length
Prefer small and focused functions.
We recognize that long functions are sometimes appropriate, so no hard limit is placed on function length. If a function exceeds about 40 lines, think about whether it can be broken up without harming the structure of the program.
Even if your long function works perfectly now, someone modifying it in a few months may add new behavior. This could result in bugs that are hard to find. Keeping your functions short and simple makes it easier for other people to read and modify your code.
You could find long and complicated functions when working with some code. Do not be intimidated by modifying existing code: if working with such a function proves to be difficult, you find that errors are hard to debug, or you want to use a piece of it in several different contexts, consider breaking up the function into smaller and more manageable pieces.
# FIXMEs
It is OK to leave FIXMEs in code. Why? Encouraging people to at least document parts of code that need to be thought out more (or that are confusing) is better than leaving this code undocumented.
All FIXMEs should be formatted like:
```
FIXME(username): Revisit this code when the frob feature is done.
```
...where username is your GitHub username.
# Testing
We use a combination of Integration and Unit testing to ensure that the our code is as bug-free as possible. All the tests can be found in `lib/python/qmk/tests/`. You can run all the tests with `qmk pytest`.
At the time of this writing our tests are not very comprehensive. Looking at the current tests and writing new test cases for untested situations is a great way to both familiarize yourself with the codebase and contribute to QMK.
## Integration Tests
Integration tests can be found in `lib/python/qmk/tests/test_cli_commands.py`. This is where CLI commands are actually run and their overall behavior is verified. We use [`subprocess`](https://docs.python.org/3.6/library/subprocess.html#module-subprocess) to launch each CLI command and a combination of checking output and returncode to determine if the right thing happened.
## Unit Tests
The other `test_*.py` files in `lib/python/qmk/tests/` contain unit tests. You can write tests for individual functions inside `lib/python/qmk/` here. Generally these files are named after the module, with dots replaced by underscores.
At the time of this writing we do not do any mocking for our tests. If you would like to help us change this please [open an issue](https://github.com/qmk/qmk_firmware/issues/new?assignees=&labels=cli%2C+python&template=other_issues.md&title=) or [join #cli on Discord](https://discord.gg/heQPAgy) and start a conversation there.

View File

@ -1,73 +0,0 @@
# Compatible Microcontrollers
QMK runs on any USB-capable AVR or ARM microcontroller with enough flash space - generally 32kB+ for AVR, and 64kB+ for ARM. With significant disabling of features, QMK may *just* squeeze into 16kB AVR MCUs.
## Atmel AVR
The following use [LUFA](https://www.fourwalledcubicle.com/LUFA.php) as the USB stack:
* [ATmega16U2](https://www.microchip.com/wwwproducts/en/ATmega16U2) / [ATmega32U2](https://www.microchip.com/wwwproducts/en/ATmega32U2)
* [ATmega16U4](https://www.microchip.com/wwwproducts/en/ATmega16U4) / [ATmega32U4](https://www.microchip.com/wwwproducts/en/ATmega32U4)
* SparkFun Pro Micro (and clones)
* PJRC Teensy 2.0
* Adafruit Feather 32U4
* [AT90USB64](https://www.microchip.com/wwwproducts/en/AT90USB646) / [AT90USB128](https://www.microchip.com/wwwproducts/en/AT90USB1286)
* PJRC Teensy++ 2.0
* [AT90USB162](https://www.microchip.com/wwwproducts/en/AT90USB162)
Certain MCUs which do not have native USB will use [V-USB](https://www.obdev.at/products/vusb/index.html) instead:
* [ATmega32A](https://www.microchip.com/wwwproducts/en/ATmega32A)
* [ATmega328P](https://www.microchip.com/wwwproducts/en/ATmega328P)
* [ATmega328](https://www.microchip.com/wwwproducts/en/ATmega328)
## ARM
You can also use any ARM chip with USB that [ChibiOS](https://www.chibios.org) supports. Most have plenty of flash. Known to work are:
### STMicroelectronics (STM32)
* [STM32F0x2](https://www.st.com/en/microcontrollers-microprocessors/stm32f0x2.html)
* [STM32F103](https://www.st.com/en/microcontrollers-microprocessors/stm32f103.html)
* Bluepill (with STM32duino bootloader)
* [STM32F303](https://www.st.com/en/microcontrollers-microprocessors/stm32f303.html)
* QMK Proton-C
* [STM32F401](https://www.st.com/en/microcontrollers-microprocessors/stm32f401.html)
* WeAct Blackpill
* [STM32F405](https://www.st.com/en/microcontrollers-microprocessors/stm32f405-415.html)
* [STM32F407](https://www.st.com/en/microcontrollers-microprocessors/stm32f407-417.html)
* [STM32F411](https://www.st.com/en/microcontrollers-microprocessors/stm32f411.html)
* WeAct Blackpill
* [STM32F446](https://www.st.com/en/microcontrollers-microprocessors/stm32f446.html)
* [STM32G431](https://www.st.com/en/microcontrollers-microprocessors/stm32g4x1.html)
* [STM32G474](https://www.st.com/en/microcontrollers-microprocessors/stm32g4x4.html)
* [STM32L412](https://www.st.com/en/microcontrollers-microprocessors/stm32l4x2.html)
* [STM32L422](https://www.st.com/en/microcontrollers-microprocessors/stm32l4x2.html)
* [STM32L432](https://www.st.com/en/microcontrollers-microprocessors/stm32l4x2.html)
* [STM32L433](https://www.st.com/en/microcontrollers-microprocessors/stm32l4x3.html)
* [STM32L442](https://www.st.com/en/microcontrollers-microprocessors/stm32l4x2.html)
* [STM32L443](https://www.st.com/en/microcontrollers-microprocessors/stm32l4x3.html)
### WestBerryTech (WB32)
* [WB32F3G71xx](http://www.westberrytech.com)
### NXP (Kinetis)
* [MKL26Z64](https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/kl-series-cortex-m0-plus/kinetis-kl2x-72-96-mhz-usb-ultra-low-power-microcontrollers-mcus-based-on-arm-cortex-m0-plus-core:KL2x)
* PJRC Teensy LC
* [MK20DX128](https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k-series-cortex-m4/k2x-usb/kinetis-k20-50-mhz-full-speed-usb-mixed-signal-integration-microcontrollers-based-on-arm-cortex-m4-core:K20_50)
* [MK20DX256](https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k-series-cortex-m4/k2x-usb/kinetis-k20-72-mhz-full-speed-usb-mixed-signal-integration-microcontrollers-mcus-based-on-arm-cortex-m4-core:K20_72)
* PJRC Teensy 3.2
* [MK66FX1M0](https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/k-series-cortex-m4/k6x-ethernet/kinetis-k66-180-mhz-dual-high-speed-full-speed-usbs-2mb-flash-microcontrollers-mcus-based-on-arm-cortex-m4-core:K66_180)
* PJRC Teensy 3.6
## Atmel ATSAM
There is limited support for one of Atmel's ATSAM microcontrollers, that being the [ATSAMD51J18A](https://www.microchip.com/wwwproducts/en/ATSAMD51J18A) used by the [Massdrop keyboards](https://github.com/qmk/qmk_firmware/tree/master/keyboards/massdrop). However, it is not recommended to design a board with this microcontroller as the support is quite specialized to Massdrop hardware.
## RISC-V
### GigaDevice
[ChibiOS-Contrib](https://github.com/ChibiOS/ChibiOS-Contrib) has support for the GigaDevice [GD32VF103 series](https://www.gigadevice.com/products/microcontrollers/gd32/risc-v/mainstream-line/gd32vf103-series/) microcontrollers and provides configurations for the [SiPeed Longan Nano](https://longan.sipeed.com/en/) development board that uses this microcontroller. It is largely pin and feature compatible with STM32F103 and STM32F303 microcontrollers.

View File

@ -1,478 +0,0 @@
# Configuring QMK
QMK is nearly infinitely configurable. Wherever possible we err on the side of allowing users to customize their keyboard, even at the expense of code size. That level of flexibility makes for a daunting configuration experience, however.
There are two main types of configuration files in QMK- `config.h` and `rules.mk`. These files exist at various levels in QMK and all files of the same type are combined to build the final configuration. The levels, from lowest priority to highest priority, are:
* QMK Default
* Keyboard
* Folders (Up to 5 levels deep)
* Keymap
## QMK Default
Every available setting in QMK has a default. If that setting is not set at the Keyboard, Folder, or Keymap level this is the setting that will be used.
## Keyboard
This level contains config options that should apply to the whole keyboard. Some settings won't change in revisions, or most keymaps. Other settings are merely defaults for this keyboard and can be overridden by folders and/or keymaps.
## Folders
Some keyboards have folders and sub-folders to allow for different hardware configurations. Most keyboards only go 1 folder deep, but QMK supports structures up to 5 folders deep. Each folder can have its own `config.h` and `rules.mk` files that are incorporated into the final configuration.
## Keymap
This level contains all of the options for that particular keymap. If you wish to override a previous declaration, you can use `#undef <variable>` to undefine it, where you can then redefine it without an error.
# The `config.h` File
This is a C header file that is one of the first things included, and will persist over the whole project (if included). Lots of variables can be set here and accessed elsewhere. The `config.h` file shouldn't be including other `config.h` files, or anything besides this:
```c
#include "config_common.h"
```
## Hardware Options
* `#define VENDOR_ID 0x1234`
* defines your VID, and for most DIY projects, can be whatever you want
* `#define PRODUCT_ID 0x5678`
* defines your PID, and for most DIY projects, can be whatever you want
* `#define DEVICE_VER 0`
* defines the device version (often used for revisions)
* `#define MANUFACTURER Me`
* generally who/whatever brand produced the board
* `#define PRODUCT Board`
* the name of the keyboard
* `#define MATRIX_ROWS 5`
* the number of rows in your keyboard's matrix
* `#define MATRIX_COLS 15`
* the number of columns in your keyboard's matrix
* `#define MATRIX_ROW_PINS { D0, D5, B5, B6 }`
* pins of the rows, from top to bottom
* may be omitted by the keyboard designer if matrix reads are handled in an alternate manner. See [low-level matrix overrides](custom_quantum_functions.md?id=low-level-matrix-overrides) for more information.
* `#define MATRIX_COL_PINS { F1, F0, B0, C7, F4, F5, F6, F7, D4, D6, B4, D7 }`
* pins of the columns, from left to right
* may be omitted by the keyboard designer if matrix reads are handled in an alternate manner. See [low-level matrix overrides](custom_quantum_functions.md?id=low-level-matrix-overrides) for more information.
* `#define MATRIX_IO_DELAY 30`
* the delay in microseconds when between changing matrix pin state and reading values
* `#define UNUSED_PINS { D1, D2, D3, B1, B2, B3 }`
* pins unused by the keyboard for reference
* `#define MATRIX_HAS_GHOST`
* define is matrix has ghost (unlikely)
* `#define MATRIX_UNSELECT_DRIVE_HIGH`
* On un-select of matrix pins, rather than setting pins to input-high, sets them to output-high.
* `#define DIODE_DIRECTION COL2ROW`
* COL2ROW or ROW2COL - how your matrix is configured. COL2ROW means the black mark on your diode is facing to the rows, and between the switch and the rows.
* `#define DIRECT_PINS { { F1, F0, B0, C7 }, { F4, F5, F6, F7 } }`
* pins mapped to rows and columns, from left to right. Defines a matrix where each switch is connected to a separate pin and ground.
* `#define AUDIO_VOICES`
* turns on the alternate audio voices (to cycle through)
* `#define C4_AUDIO`
* enables audio on pin C4
* Deprecated. Use `#define AUDIO_PIN C4`
* `#define C5_AUDIO`
* enables audio on pin C5
* Deprecated. Use `#define AUDIO_PIN C5`
* `#define C6_AUDIO`
* enables audio on pin C6
* Deprecated. Use `#define AUDIO_PIN C6`
* `#define B5_AUDIO`
* enables audio on pin B5 (duophony is enabled if one of B pins is enabled along with one of C pins)
* Deprecated. Use `#define AUDIO_PIN B5`, or use `#define AUDIO_PIN_ALT B5` if a `C` pin is enabled with `AUDIO_PIN`
* `#define B6_AUDIO`
* enables audio on pin B6 (duophony is enabled if one of B pins is enabled along with one of C pins)
* Deprecated. Use `#define AUDIO_PIN B6`, or use `#define AUDIO_PIN_ALT B6` if a `C` pin is enabled with `AUDIO_PIN`
* `#define B7_AUDIO`
* enables audio on pin B7 (duophony is enabled if one of B pins is enabled along with one of C pins)
* Deprecated. Use `#define AUDIO_PIN B7`, or use `#define AUDIO_PIN_ALT B7` if a `C` pin is enabled with `AUDIO_PIN`
* `#define BACKLIGHT_PIN B7`
* pin of the backlight
* `#define BACKLIGHT_LEVELS 3`
* number of levels your backlight will have (maximum 31 excluding off)
* `#define BACKLIGHT_BREATHING`
* enables backlight breathing
* `#define BREATHING_PERIOD 6`
* the length of one backlight "breath" in seconds
* `#define DEBOUNCE 5`
* the delay when reading the value of the pin (5 is default)
* `#define LOCKING_SUPPORT_ENABLE`
* mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap
* `#define LOCKING_RESYNC_ENABLE`
* tries to keep switch state consistent with keyboard LED state
* `#define IS_COMMAND() (get_mods() == MOD_MASK_SHIFT)`
* key combination that allows the use of magic commands (useful for debugging)
* `#define USB_MAX_POWER_CONSUMPTION 500`
* sets the maximum power (in mA) over USB for the device (default: 500)
* `#define USB_POLLING_INTERVAL_MS 10`
* sets the USB polling rate in milliseconds for the keyboard, mouse, and shared (NKRO/media keys) interfaces
* `#define USB_SUSPEND_WAKEUP_DELAY 200`
* set the number of milliseconde to pause after sending a wakeup packet
* `#define F_SCL 100000L`
* sets the I2C clock rate speed for keyboards using I2C. The default is `400000L`, except for keyboards using `split_common`, where the default is `100000L`.
## Features That Can Be Disabled
If you define these options you will disable the associated feature, which can save on code size.
* `#define NO_DEBUG`
* disable debugging
* `#define NO_PRINT`
* disable printing/debugging using hid_listen
* `#define NO_ACTION_LAYER`
* disable layers
* `#define NO_ACTION_TAPPING`
* disable tap dance and other tapping features
* `#define NO_ACTION_ONESHOT`
* disable one-shot modifiers
## Features That Can Be Enabled
If you define these options you will enable the associated feature, which may increase your code size.
* `#define FORCE_NKRO`
* NKRO by default requires to be turned on, this forces it on during keyboard startup regardless of EEPROM setting. NKRO can still be turned off but will be turned on again if the keyboard reboots.
* `#define STRICT_LAYER_RELEASE`
* force a key release to be evaluated using the current layer stack instead of remembering which layer it came from (used for advanced cases)
## Behaviors That Can Be Configured
* `#define TAPPING_TERM 200`
* how long before a tap becomes a hold, if set above 500, a key tapped during the tapping term will turn it into a hold too
* `#define TAPPING_TERM_PER_KEY`
* enables handling for per key `TAPPING_TERM` settings
* `#define RETRO_TAPPING`
* tap anyway, even after TAPPING_TERM, if there was no other key interruption between press and release
* See [Retro Tapping](tap_hold.md#retro-tapping) for details
* `#define RETRO_TAPPING_PER_KEY`
* enables handling for per key `RETRO_TAPPING` settings
* `#define TAPPING_TOGGLE 2`
* how many taps before triggering the toggle
* `#define PERMISSIVE_HOLD`
* makes tap and hold keys trigger the hold if another key is pressed before releasing, even if it hasn't hit the `TAPPING_TERM`
* See [Permissive Hold](tap_hold.md#permissive-hold) for details
* `#define PERMISSIVE_HOLD_PER_KEY`
* enabled handling for per key `PERMISSIVE_HOLD` settings
* `#define IGNORE_MOD_TAP_INTERRUPT`
* makes it possible to do rolling combos (zx) with keys that convert to other keys on hold, by enforcing the `TAPPING_TERM` for both keys.
* See [Ignore Mod Tap Interrupt](tap_hold.md#ignore-mod-tap-interrupt) for details
* `#define IGNORE_MOD_TAP_INTERRUPT_PER_KEY`
* enables handling for per key `IGNORE_MOD_TAP_INTERRUPT` settings
* `#define TAPPING_FORCE_HOLD`
* makes it possible to use a dual role key as modifier shortly after having been tapped
* See [Tapping Force Hold](tap_hold.md#tapping-force-hold)
* Breaks any Tap Toggle functionality (`TT` or the One Shot Tap Toggle)
* `#define TAPPING_FORCE_HOLD_PER_KEY`
* enables handling for per key `TAPPING_FORCE_HOLD` settings
* `#define LEADER_TIMEOUT 300`
* how long before the leader key times out
* If you're having issues finishing the sequence before it times out, you may need to increase the timeout setting. Or you may want to enable the `LEADER_PER_KEY_TIMING` option, which resets the timeout after each key is tapped.
* `#define LEADER_PER_KEY_TIMING`
* sets the timer for leader key chords to run on each key press rather than overall
* `#define LEADER_KEY_STRICT_KEY_PROCESSING`
* Disables keycode filtering for Mod-Tap and Layer-Tap keycodes. Eg, if you enable this, you would need to specify `MT(MOD_CTL, KC_A)` if you want to use `KC_A`.
* `#define ONESHOT_TIMEOUT 300`
* how long before oneshot times out
* `#define ONESHOT_TAP_TOGGLE 2`
* how many taps before oneshot toggle is triggered
* `#define QMK_KEYS_PER_SCAN 4`
* Allows sending more than one key per scan. By default, only one key event gets
sent via `process_record()` per scan. This has little impact on most typing, but
if you're doing a lot of chords, or your scan rate is slow to begin with, you can
have some delay in processing key events. Each press and release is a separate
event. For a keyboard with 1ms or so scan times, even a very fast typist isn't
going to produce the 500 keystrokes a second needed to actually get more than a
few ms of delay from this. But if you're doing chording on something with 3-4ms
scan times? You probably want this.
* `#define COMBO_COUNT 2`
* Set this to the number of combos that you're using in the [Combo](feature_combo.md) feature. Or leave it undefined and programmatically set the count.
* `#define COMBO_TERM 200`
* how long for the Combo keys to be detected. Defaults to `TAPPING_TERM` if not defined.
* `#define COMBO_MUST_HOLD_MODS`
* Flag for enabling extending timeout on Combos containing modifers
* `#define COMBO_MOD_TERM 200`
* Allows for extending COMBO_TERM for mod keys while mid-combo.
* `#define COMBO_MUST_HOLD_PER_COMBO`
* Flag to enable per-combo COMBO_TERM extension and `get_combo_must_hold()` function
* `#define COMBO_TERM_PER_COMBO`
* Flag to enable per-combo COMBO_TERM extension and `get_combo_term()` function
* `#define COMBO_STRICT_TIMER`
* Only start the combo timer on the first key press instead of on all key presses.
* `#define COMBO_NO_TIMER`
* Disable the combo timer completely for relaxed combos.
* `#define TAP_CODE_DELAY 100`
* Sets the delay between `register_code` and `unregister_code`, if you're having issues with it registering properly (common on VUSB boards). The value is in milliseconds.
* `#define TAP_HOLD_CAPS_DELAY 80`
* Sets the delay for Tap Hold keys (`LT`, `MT`) when using `KC_CAPS_LOCK` keycode, as this has some special handling on MacOS. The value is in milliseconds, and defaults to 80 ms if not defined. For macOS, you may want to set this to 200 or higher.
* `#define KEY_OVERRIDE_REPEAT_DELAY 500`
* Sets the key repeat interval for [key overrides](feature_key_overrides.md).
## RGB Light Configuration
* `#define RGB_DI_PIN D7`
* pin the DI on the WS2812 is hooked-up to
* `#define RGBLIGHT_ANIMATIONS`
* run RGB animations
* `#define RGBLIGHT_LAYERS`
* Lets you define [lighting layers](feature_rgblight.md?id=lighting-layers) that can be toggled on or off. Great for showing the current keyboard layer or caps lock state.
* `#define RGBLIGHT_MAX_LAYERS`
* Defaults to 8. Can be expanded up to 32 if more [lighting layers](feature_rgblight.md?id=lighting-layers) are needed.
* Note: Increasing the maximum will increase the firmware size and slow sync on split keyboards.
* `#define RGBLIGHT_LAYER_BLINK`
* Adds ability to [blink](feature_rgblight.md?id=lighting-layer-blink) a lighting layer for a specified number of milliseconds (e.g. to acknowledge an action).
* `#define RGBLIGHT_LAYERS_OVERRIDE_RGB_OFF`
* If defined, then [lighting layers](feature_rgblight?id=overriding-rgb-lighting-onoff-status) will be shown even if RGB Light is off.
* `#define RGBLED_NUM 12`
* number of LEDs
* `#define RGBLIGHT_SPLIT`
* Needed if both halves of the board have RGB LEDs wired directly to the RGB output pin on the controllers instead of passing the output of the left half to the input of the right half
* `#define RGBLED_SPLIT { 6, 6 }`
* number of LEDs connected that are directly wired to `RGB_DI_PIN` on each half of a split keyboard
* First value indicates number of LEDs for left half, second value is for the right half
* When RGBLED_SPLIT is defined, RGBLIGHT_SPLIT is implicitly defined.
* `#define RGBLIGHT_HUE_STEP 12`
* units to step when in/decreasing hue
* `#define RGBLIGHT_SAT_STEP 25`
* units to step when in/decreasing saturation
* `#define RGBLIGHT_VAL_STEP 12`
* units to step when in/decreasing value (brightness)
* `#define RGBW`
* Enables RGBW LED support
## Mouse Key Options
* `#define MOUSEKEY_INTERVAL 20`
* `#define MOUSEKEY_DELAY 0`
* `#define MOUSEKEY_TIME_TO_MAX 60`
* `#define MOUSEKEY_MAX_SPEED 7`
* `#define MOUSEKEY_WHEEL_DELAY 0`
## Split Keyboard Options
Split Keyboard specific options, make sure you have 'SPLIT_KEYBOARD = yes' in your rules.mk
* `SPLIT_TRANSPORT = custom`
* Allows replacing the standard split communication routines with a custom one. ARM based split keyboards must use this at present.
### Setting Handedness
One thing to remember, the side that the USB port is plugged into is always the master half. The side not plugged into USB is the slave.
There are a few different ways to set handedness for split keyboards (listed in order of precedence):
1. Set `SPLIT_HAND_PIN`: Reads a pin to determine handedness. If pin is high, it's the left side, if low, the half is determined to be the right side
2. Set `EE_HANDS` and flash `eeprom-lefthand.eep`/`eeprom-righthand.eep` to each half
* For boards with DFU bootloader you can use `:dfu-split-left`/`:dfu-split-right` to flash these EEPROM files
* For boards with Caterina bootloader (like stock Pro Micros), use `:avrdude-split-left`/`:avrdude-split-right`
* For boards with ARM DFU bootloader (like Proton C), use `:dfu-util-split-left`/`:dfu-util-split-right`
3. Set `MASTER_RIGHT`: Half that is plugged into the USB port is determined to be the master and right half (inverse of the default)
4. Default: The side that is plugged into the USB port is the master half and is assumed to be the left half. The slave side is the right half
#### Defines for handedness
* `#define SPLIT_HAND_PIN B7`
* For using high/low pin to determine handedness, low = right hand, high = left hand. Replace `B7` with the pin you are using. This is optional, and if you leave `SPLIT_HAND_PIN` undefined, then you can still use the EE_HANDS method or MASTER_LEFT / MASTER_RIGHT defines like the stock Let's Split uses.
* `#define SPLIT_HAND_MATRIX_GRID <out_pin>,<in_pin>`
* The handedness is determined by using the intersection of the keyswitches in the key matrix, which does not exist. Normally, when this intersection is shorted (level low), it is considered left. If you define `#define SPLIT_HAND_MATRIX_GRID_LOW_IS_RIGHT`, it is determined to be right when the level is low.
* `#define EE_HANDS` (only works if `SPLIT_HAND_PIN` and `SPLIT_HAND_MATRIX_GRID` are not defined)
* Reads the handedness value stored in the EEPROM after `eeprom-lefthand.eep`/`eeprom-righthand.eep` has been flashed to their respective halves.
* `#define MASTER_RIGHT`
* Master half is defined to be the right half.
### Other Options
* `#define USE_I2C`
* For using I2C instead of Serial (default is serial; serial transport is supported on ARM -- I2C is AVR-only)
* `#define SOFT_SERIAL_PIN D0`
* When using serial, define this. `D0` or `D1`,`D2`,`D3`,`E6`.
* `#define MATRIX_ROW_PINS_RIGHT { <row pins> }`
* `#define MATRIX_COL_PINS_RIGHT { <col pins> }`
* If you want to specify a different pinout for the right half than the left half, you can define `MATRIX_ROW_PINS_RIGHT`/`MATRIX_COL_PINS_RIGHT`. Currently, the size of `MATRIX_ROW_PINS` must be the same as `MATRIX_ROW_PINS_RIGHT` and likewise for the definition of columns.
* may be omitted by the keyboard designer if matrix reads are handled in an alternate manner. See [low-level matrix overrides](custom_quantum_functions.md?id=low-level-matrix-overrides) for more information.
* `#define DIRECT_PINS_RIGHT { { F1, F0, B0, C7 }, { F4, F5, F6, F7 } }`
* If you want to specify a different direct pinout for the right half than the left half, you can define `DIRECT_PINS_RIGHT`. Currently, the size of `DIRECT_PINS` must be the same as `DIRECT_PINS_RIGHT`.
* `#define RGBLED_SPLIT { 6, 6 }`
* See [RGB Light Configuration](#rgb-light-configuration)
* `#define SELECT_SOFT_SERIAL_SPEED <speed>` (default speed is 1)
* Sets the protocol speed when using serial communication
* Speeds:
* 0: about 189kbps (Experimental only)
* 1: about 137kbps (default)
* 2: about 75kbps
* 3: about 39kbps
* 4: about 26kbps
* 5: about 20kbps
* `#define SPLIT_USB_DETECT`
* Detect (with timeout) USB connection when delegating master/slave
* Default behavior for ARM
* Required for AVR Teensy (without hardware mods)
* `#define SPLIT_USB_TIMEOUT 2000`
* Maximum timeout when detecting master/slave when using `SPLIT_USB_DETECT`
* `#define SPLIT_USB_TIMEOUT_POLL 10`
* Poll frequency when detecting master/slave when using `SPLIT_USB_DETECT`
* `#define FORCED_SYNC_THROTTLE_MS 100`
* Deadline for synchronizing data from master to slave when using the QMK-provided split transport.
* `#define SPLIT_TRANSPORT_MIRROR`
* Mirrors the master-side matrix on the slave when using the QMK-provided split transport.
* `#define SPLIT_LAYER_STATE_ENABLE`
* Ensures the current layer state is available on the slave when using the QMK-provided split transport.
* `#define SPLIT_LED_STATE_ENABLE`
* Ensures the current host indicator state (caps/num/scroll) is available on the slave when using the QMK-provided split transport.
* `#define SPLIT_MODS_ENABLE`
* Ensures the current modifier state (normal, weak, and oneshot) is available on the slave when using the QMK-provided split transport.
* `#define SPLIT_WPM_ENABLE`
* Ensures the current WPM is available on the slave when using the QMK-provided split transport.
* `#define SPLIT_OLED_ENABLE`
* Syncs the on/off state of the OLED between the halves.
* `#define SPLIT_ST7565_ENABLE`
* Syncs the on/off state of the ST7565 screen between the halves.
* `#define SPLIT_TRANSACTION_IDS_KB .....`
* `#define SPLIT_TRANSACTION_IDS_USER .....`
* Allows for custom data sync with the slave when using the QMK-provided split transport. See [custom data sync between sides](feature_split_keyboard.md#custom-data-sync) for more information.
# The `rules.mk` File
This is a [make](https://www.gnu.org/software/make/manual/make.html) file that is included by the top-level `Makefile`. It is used to set some information about the MCU that we will be compiling for as well as enabling and disabling certain features.
## Build Options
* `DEFAULT_FOLDER`
* Used to specify a default folder when a keyboard has more than one sub-folder.
* `FIRMWARE_FORMAT`
* Defines which format (bin, hex) is copied to the root `qmk_firmware` folder after building.
* `SRC`
* Used to add files to the compilation/linking list.
* `LIB_SRC`
* Used to add files as a library to the compilation/linking list.
The files specified by `LIB_SRC` is linked after the files specified by `SRC`.
For example, if you specify:
```
SRC += a.c
LIB_SRC += lib_b.c
SRC += c.c
LIB_SRC += lib_d.c
```
The link order is as follows.
```
... a.o c.o ... lib_b.a lib_d.a ...
```
* `LAYOUTS`
* A list of [layouts](feature_layouts.md) this keyboard supports.
* `LTO_ENABLE`
* Enables Link Time Optimization (LTO) when compiling the keyboard. This makes the process take longer, but it can significantly reduce the compiled size (and since the firmware is small, the added time is not noticeable).
## AVR MCU Options
* `MCU = atmega32u4`
* `F_CPU = 16000000`
* `ARCH = AVR8`
* `F_USB = $(F_CPU)`
* `OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT`
* `BOOTLOADER = atmel-dfu` with the following options:
* `atmel-dfu`
* `lufa-dfu`
* `qmk-dfu`
* `halfkay`
* `caterina`
* `bootloadhid`
* `usbasploader`
## Feature Options :id=feature-options
Use these to enable or disable building certain features. The more you have enabled the bigger your firmware will be, and you run the risk of building a firmware too large for your MCU.
* `MAGIC_ENABLE`
* MAGIC actions (BOOTMAGIC without the boot)
* `BOOTMAGIC_ENABLE`
* Enable Bootmagic Lite
* `MOUSEKEY_ENABLE`
* Mouse keys
* `EXTRAKEY_ENABLE`
* Audio control and System control
* `CONSOLE_ENABLE`
* Console for debug
* `COMMAND_ENABLE`
* Commands for debug and configuration
* `COMBO_ENABLE`
* Key combo feature
* `NKRO_ENABLE`
* USB N-Key Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
* `RING_BUFFERED_6KRO_REPORT_ENABLE`
* USB 6-Key Rollover - Instead of stopping any new input once 6 keys are pressed, the oldest key is released and the new key is pressed.
* `AUDIO_ENABLE`
* Enable the audio subsystem.
* `KEY_OVERRIDE_ENABLE`
* Enable the key override feature
* `RGBLIGHT_ENABLE`
* Enable keyboard underlight functionality
* `LEADER_ENABLE`
* Enable leader key chording
* `MIDI_ENABLE`
* MIDI controls
* `UNICODE_ENABLE`
* Unicode
* `BLUETOOTH_ENABLE`
* Current options are BluefruitLE, RN42
* `SPLIT_KEYBOARD`
* Enables split keyboard support (dual MCU like the let's split and bakingpy's boards) and includes all necessary files located at quantum/split_common
* `CUSTOM_MATRIX`
* Allows replacing the standard matrix scanning routine with a custom one.
* `DEBOUNCE_TYPE`
* Allows replacing the standard key debouncing routine with an alternative or custom one.
* `WAIT_FOR_USB`
* Forces the keyboard to wait for a USB connection to be established before it starts up
* `NO_USB_STARTUP_CHECK`
* Disables usb suspend check after keyboard startup. Usually the keyboard waits for the host to wake it up before any tasks are performed. This is useful for split keyboards as one half will not get a wakeup call but must send commands to the master.
* `DEFERRED_EXEC_ENABLE`
* Enables deferred executor support -- timed delays before callbacks are invoked. See [deferred execution](custom_quantum_functions.md#deferred-execution) for more information.
* `DYNAMIC_TAPPING_TERM_ENABLE`
* Allows to configure the global tapping term on the fly.
## USB Endpoint Limitations
In order to provide services over USB, QMK has to use USB endpoints.
These are a finite resource: each microcontroller has only a certain number.
This limits what features can be enabled together.
If the available endpoints are exceeded, a build error is thrown.
The following features can require separate endpoints:
* `MOUSEKEY_ENABLE`
* `EXTRAKEY_ENABLE`
* `CONSOLE_ENABLE`
* `NKRO_ENABLE`
* `MIDI_ENABLE`
* `RAW_ENABLE`
* `VIRTSER_ENABLE`
In order to improve utilisation of the endpoints, the HID features can be combined to use a single endpoint.
By default, `MOUSEKEY`, `EXTRAKEY`, and `NKRO` are combined into a single endpoint.
The base keyboard functionality can also be combined into the endpoint,
by setting `KEYBOARD_SHARED_EP = yes`.
This frees up one more endpoint,
but it can prevent the keyboard working in some BIOSes,
as they do not implement Boot Keyboard protocol switching.
Combining the mouse also breaks Boot Mouse compatibility.
The mouse can be uncombined by setting `MOUSE_SHARED_EP = no` if this functionality is required.

View File

@ -1,61 +0,0 @@
# QMK Configurator Architecture
This page describes the web architecture behind QMK Configurator at a high level. If you are interested in the architecture of the QMK Configurator code itself you should start at the [qmk_configurator](https://github.com/qmk/qmk_configurator) repository.
# Overview
![QMK Configurator Architecture Diagram](configurator_diagram.svg)
# Detailed Description
QMK Configurator is a [Single Page Application](https://en.wikipedia.org/wiki/Single-page_application) that allows users to create custom keymaps for their QMK-compatible keyboard. They can export JSON representation of their keymaps and compile firmware binaries that can be flashed to their keyboard using a tool like [QMK Toolbox](https://github.com/qmk/qmk_toolbox).
Configurator gets metadata about keyboards from the Keyboard Metadata store and submits compile requests to the QMK API. The results of those compile requests will be made available on [Digital Ocean Spaces](https://www.digitalocean.com/products/spaces/), an S3-compatible data store.
## Configurator Frontend
Address: <https://config.qmk.fm>
The [Configurator Frontend](https://config.qmk.fm) is compiled into a set of static files that are served by Github Pages. This action happens every time a commit is pushed to the [qmk_configurator `master`](https://github.com/qmk/qmk_configurator) branch. You can view the status of these jobs on the [qmk_configurator actions tab](https://github.com/qmk/qmk_configurator/actions/workflows/build.yml).
## Keyboard Metadata
Address: <https://keyboards.qmk.fm>
The Keyboard Metadata is generated every time a keyboard in [qmk_firmware](https://github.com/qmk/qmk_firmware) changes. The resulting JSON files are uploaded to Spaces and used by Configurator to generate UI for each keyboard. You can view the status of this job on the [qmk_firmware actions tab](https://github.com/qmk/qmk_firmware/actions/workflows/api.yml). If you are a QMK Collaborator you can manually run this job using the `workflow_dispatch` event trigger.
## QMK API
Address: <http://api.qmk.fm>
The QMK API accepts `keymap.json` files for compilation. These are the same files you can use directly with `qmk compile` and `qmk flash`. When a `keymap.json` is submitted the browser will poll the status of the job periodically (every 2 seconds or longer, preferably) until the job has completed. The final status JSON will contain pointers to source and binary downloads for the keymap.
QMK API always presents the source and binary downloads side-by-side to comply with the GPL.
There are 3 non-error status responses from the API-
1. Compile Job Queued
2. Compile Job Running
3. Compile Job Finished
### Compile Job Queued
This status indicates that the job has not yet been picked up by a [QMK Compiler](#qmk-compiler) node. Configurator shows this status as "Waiting for an oven".
### Compile Job Running
This status indicates that the job has started compiling. Configurator shows this status as "Baking".
### Compile Job Finished
This status indicates that the job has completed. There will be keys in the status JSON for source and binary downloads.
## Redis/RQ
QMK API uses RQ to distribute jobs to the available [QMK Compiler](#qmk-compiler) nodes. When a `keymap.json` is received it's put into the RQ queue, where a `qmk_compiler` node will pick it up from.
## QMK Compiler
[QMK Compiler](https://github.com/qmk/qmk_compiler) is what actually performs the compilation of the `keymap.json`. It does so by checking out the requested `qmk_firmware` branch, running `qmk compile keymap.json`, and then uploading the resulting source and binary to Digital Ocean Spaces.
When users download their source/binary, API will redirect them to the authenticated Spaces download URL.

View File

@ -1,193 +0,0 @@
# Adding Default Keymaps to QMK Configurator :id=adding-default-keymaps
This page covers how to add a default keymap for a keyboard to QMK Configurator.
## Technical Information :id=technical-information
QMK Configurator uses JSON as its native file format for keymaps. As much as possible, these should be kept such that they behave the same as running `make <keyboard>:default` from `qmk_firmware`.
Keymaps in this directory require four key-value pairs:
* `keyboard` (string)
* This is the name of the keyboard, the same as would be used when running a compile job through `make` (e.g. `make 1upkeyboards/1up60rgb:default`).
* `keymap` (string)
* Should be set to `default`.
* `layout` (string)
* This is the layout macro used by the default keymap.
* `layers` (array)
* The keymap itself. This key should contain one array per layer, which themselves should contain the keycodes that make up that layer.
Additionally, most keymaps contain a `commit` key. This key is not consumed by the API that back-stops QMK Configurator, but is used by Configurator's maintainers to tell which version of a keymap was used to create the JSON keymap in this repository. The value is the SHA of the last commit to modify a board's default `keymap.c` in the `qmk_firmware` repository. The SHA is found by checking out [the `master` branch of the `qmk/qmk_firmware` repository](https://github.com/qmk/qmk_firmware/tree/master/) and running `git log -1 --pretty=oneline -- keyboards/<keyboard>/keymaps/default/keymap.c` (use `keymap.json` if the keyboard in question has this file instead), which should return something similar to:
```
f14629ed1cd7c7ec9089604d64f29a99981558e8 Remove/migrate action_get_macro()s from default keymaps (#5625)
```
In this example, `f14629ed1cd7c7ec9089604d64f29a99981558e8` is the value that should be used for `commit`.
## Example :id=example
If one wished to add a default keymap for the H87a by Hineybush, one would run the `git log` command above against the H87a's default keymap in `qmk_firmware`:
```
user ~/qmk_firmware (master)
$ git log -1 --pretty=oneline master -- keyboards/hineybush/h87a/keymaps/default/keymap.c
ef8878fba5d3786e3f9c66436da63a560cd36ac9 Hineybush h87a lock indicators (#8237)
```
Now that we have the commit hash, we need the keymap (edited for readability):
```c
...
#include QMK_KEYBOARD_H
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = LAYOUT_all(
KC_ESC, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, KC_PSCR, KC_SCRL, KC_PAUS,
KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_MINS, KC_EQL, KC_BSPC, KC_BSPC, KC_INS, KC_HOME, KC_PGUP,
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_LBRC, KC_RBRC, KC_BSLS, KC_DEL, KC_END, KC_PGDN,
KC_CAPS, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_NUHS, KC_ENT,
KC_LSFT, KC_NUBS, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, KC_TRNS, KC_UP,
KC_LCTL, KC_LGUI, KC_LALT, KC_SPC, KC_RALT, MO(1), KC_RGUI, KC_RCTL, KC_LEFT, KC_DOWN, KC_RGHT),
[1] = LAYOUT_all(
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, RGB_TOG, RGB_MOD, RGB_HUD, RGB_HUI, RGB_SAD, RGB_SAI, RGB_VAD, RGB_VAI, BL_TOGG, BL_DEC, BL_INC,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_VOLU,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, RESET, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_MPLY, KC_MNXT, KC_VOLD,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS,
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS),
};
```
The default keymap uses the `LAYOUT_all` macro, so that will be the value of the `layout` key. Compiled to a QMK Configurator JSON keymap, our resulting file should be:
```json
{
"keyboard": "hineybush/h87a",
"keymap": "default",
"commit": "ef8878fba5d3786e3f9c66436da63a560cd36ac9",
"layout": "LAYOUT_all",
"layers": [
[
"KC_ESC", "KC_F1", "KC_F2", "KC_F3", "KC_F4", "KC_F5", "KC_F6", "KC_F7", "KC_F8", "KC_F9", "KC_F10", "KC_F11", "KC_F12", "KC_PSCR", "KC_SCRL", "KC_PAUS",
"KC_GRV", "KC_1", "KC_2", "KC_3", "KC_4", "KC_5", "KC_6", "KC_7", "KC_8", "KC_9", "KC_0", "KC_MINS", "KC_EQL", "KC_BSPC", "KC_BSPC", "KC_INS", "KC_HOME", "KC_PGUP",
"KC_TAB", "KC_Q", "KC_W", "KC_E", "KC_R", "KC_T", "KC_Y", "KC_U", "KC_I", "KC_O", "KC_P", "KC_LBRC", "KC_RBRC", "KC_BSLS", "KC_DEL", "KC_END", "KC_PGDN",
"KC_CAPS", "KC_A", "KC_S", "KC_D", "KC_F", "KC_G", "KC_H", "KC_J", "KC_K", "KC_L", "KC_SCLN", "KC_QUOT", "KC_NUHS", "KC_ENT",
"KC_LSFT", "KC_NUBS", "KC_Z", "KC_X", "KC_C", "KC_V", "KC_B", "KC_N", "KC_M", "KC_COMM", "KC_DOT", "KC_SLSH", "KC_RSFT", "KC_TRNS", "KC_UP",
"KC_LCTL", "KC_LGUI", "KC_LALT", "KC_SPC", "KC_RALT", "MO(1)", "KC_RGUI", "KC_RCTL", "KC_LEFT", "KC_DOWN", "KC_RGHT"
],
[
"KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "RGB_TOG", "RGB_MOD", "RGB_HUD", "RGB_HUI", "RGB_SAD", "RGB_SAI", "RGB_VAD", "RGB_VAI", "BL_TOGG", "BL_DEC", "BL_INC",
"KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_VOLU",
"KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "RESET", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_MPLY", "KC_MNXT", "KC_VOLD",
"KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS",
"KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS",
"KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS", "KC_TRNS"
]
]
}
```
The white space in the `layers` arrays have no effect on the functionality of the keymap, but are used to make these files easier for humans to read.
## Caveats :id=caveats
### Layers can only be referenced by number :id=layer-references
A common QMK convention is to name layers using a series of `#define`s, or an `enum` statement:
```c
enum layer_names {
_BASE,
_MEDIA,
_FN
};
```
This works in C, but for Configurator, you *must* use the layer's numeric index `MO(_FN)` would need to be `MO(2)` in the above example.
### No support for custom code of any kind :id=custom-code
Features that require adding functions to the keymap.c file, such as Tap Dance or Unicode, can not be compiled in Configurator **at all**. Even setting `TAP_DANCE_ENABLE = yes` in the `qmk_firmware` repository at the keyboard level will prevent Configurator from compiling **any** firmware for that keyboard. This is limited both by the API and the current spec of our JSON keymap format.
### Limited Support for Custom keycodes :id=custom-keycodes
There is a way to support custom keycodes: if the logic for a custom keycode is implemented at the keyboard level instead of the keymap level in qmk_firmware, that keycode *can* be used in Configurator and it *will* compile and work. Instead of using the following in your `keymap.c`:
```c
enum custom_keycodes {
MACRO_1 = SAFE_RANGE,
MACRO_2,
MACRO_3
};
...
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch(keycode) {
case MACRO_1:
if (record->event.pressed) {
SEND_STRING("This is macro #1.");
}
return false;
case MACRO_2:
if (record->event.pressed) {
SEND_STRING("This is macro #2.");
}
return false;
case MACRO_3:
if (record->event.pressed) {
SEND_STRING("This is macro #3.");
}
return false;
}
return true;
};
```
... add the keycode `enum` block to your keyboard's header file (`<keyboard>.h`) as follows (note that the `enum` is named `keyboard_keycodes` here):
```c
enum keyboard_keycodes {
MACRO_1 = SAFE_RANGE,
MACRO_2,
MACRO_3,
NEW_SAFE_RANGE // Important!
};
```
... then the logic to your `<keyboard>.c` through `process_record_kb()`:
```c
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
switch(keycode) {
case MACRO_1:
if (record->event.pressed) {
SEND_STRING("This is macro #1.");
}
return false;
case MACRO_2:
if (record->event.pressed) {
SEND_STRING("This is macro #2.");
}
return false;
case MACRO_3:
if (record->event.pressed) {
SEND_STRING("This is macro #3.");
}
return false;
}
return process_record_user(keycode, record);
};
```
Note the call to `process_record_user()` at the end. Additionally, users of the keyboard will need to use `NEW_SAFE_RANGE` instead of `SAFE_RANGE` if they wish to add their own custom keycodes at keymap level, beyond what is provided by the keyboard.
## Additional Reading :id=additional-reading
For QMK Configurator to support your keyboard, your keyboard must be present in the `master` branch of the `qmk_firmware` repository. For instructions on this, please see [Supporting Your Keyboard in QMK Configurator](reference_configurator_support.md).

View File

@ -1 +0,0 @@
<mxfile host="Electron" modified="2021-08-09T19:46:29.036Z" agent="5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) draw.io/14.6.13 Chrome/89.0.4389.128 Electron/12.0.7 Safari/537.36" etag="PQ2r34UrZa0TfW4Fw0EV" version="14.6.13" type="device"><diagram id="NEtccoSKIy4HskWlhJpu" name="Page-1">5VvbcqM4EP2a1O4+hOLqy2Ni5zKX1CTxzszOU0oG2dZEIBZEYu/XbwuEDQg7csZ2vFlXjQca0RLdR+eohXPiDML5VYLi2Q0LMD2xzWB+4gxPbNvqezb8JywLaTFtr7BMExJI28owIv/gsqG0ZiTAaa0hZ4xyEteNPosi7POaDSUJe643mzBa7zVGU6wYRj6iqvU7CfissPY8c2W/xmQ6K3u2THklRGVjaUhnKGDPFZNzceIMEsZ4cRTOB5iK6JVxKe67XHN1ObAER1znhgfT76Zzxxp3Z49j5+7zjw/z+NSS+XlCNJNPLEfLF2UIcAARkacs4TM2ZRGiFyvrecKyKMCiHxPOVm0+MxaD0QLjT8z5QqYXZZyBacZDKq/iKDgTyYLTiEW4sFwSSqXLAKWz3L9orD64jEXKssTHG57WlQBCyRTzTVGRDsWTV3qQcb3CLMQ8WUCDBFPEyVMdK0hCbrpst8oKHMjEbJEk9+UckTDHcTWm0jQk4RR6pWQM3z4l8QNKuDhkYZxxnKRw/J0ljymHJ2HRg2X35vDPiKPp2kA/4YTj+cbIyKunjmv0zMpHeljSQXH6XJla0jSrzKrStvPIei9Hdgm9HNoZpyTCgyXZmPWYI0qmERz7EDGcgIGiMaa3LCUittULIoQEaOZzo8GYcc7CSoMz6ZKLqXQOJBKLgYXzqSBc4xmPKcy11JgSPsvG0GLCIn6JQkJFiK8xfcLCjbwgJyDM+uJ8wChL8ud0ivSILnjCHnHblQlMyIp9kn/ADkMJCK55G14OL4YXmybrFhhyOzXQtKEGdMVwVeBUzDvHTjmKjdS54jWfojQlfpP3YCR/CRwZXnn6o3ptOJcgK84W8gwma8JVz7lZ0qZVI9Ff401PkzddTdqsJM5rme6lTZtdZQ+3jMCTLXFjlRkqyaZJI8Vzy7uqytl01Gk4chqOisAojnJYLR/7F5BWTpkV0gZUTDjgbnOUxTEorqCosxO7QyGG5+MEjqbiaDBLoPsTGzo2L0mCJ2yuNhri9FHQi21+iehCAfHzjHA8ilEOkWegnTqGm0QVkiDIVwU5950j/3Garw9Kdsjd7YYZlmurkhlUYrDNFoB19qUnltPCCUW40xhFZcBnnIvl65noTChxNCFT4+/w0ZiEZXOwV+9Qk9bmd0SiKYTeNm+F9AM2RKTX3tno4iN6QiM/IbFYHXz7eqHeOJI8AeM2YbTQDL4fiuFnCeIs0RvmNUt54eWqUK1iwOnaZ28Asr7cfC0894E/q2PYehDs7w2CGqtFdbndqklVRaoI1BpN2tEaXVdryql2JGKzTKiEgvdasXHchqNDi01XAz/vpiK0tOHW0YTbYUpC6/1ULj9TuH0XlWZ93riOuhjotsz/rmf09pWkjpKkuvI/4sWYoSRIG+K/ks9PsgV4ucEcBYgjXV2ekCR8hoiq7a+uoeGZX+RN3PQ1BsdiwXB2+wG+h629rFR7SKDaRPSLj4VIm7n2ptsuG2voPKRIu7Zt9N9apHtbiXRr7VirASVHVgtAc4cFoDZNekclypZnWK5p9Tp9y+v1up1y73nRQMbWBWHdz3LP90ASbav14HuW6L4m9spsHotE95Us3d18Kkm2mS5KSZziik76lGXBy+XNLpTTq8O5Y6rKadkts3Rv27JlZ2uFE8VkrWTeX4z+nGS0DLSeWILDTYp3jyJ/Bqsf2xRrFXP4Bb6+3fy2tegdUuc6pqenct29pVFjkfryDulhtzDLWXskCnbarCtd75WadaoUlpqqBelBi0qzWDRINwzZanTkOObmkTVv8Pq1G+CgGMNuRVSl53csonZXV0R7RyWitrobIasPMMoCRGF4WY807b+PnD+OS3idXh347fuHrdrbt8qWu4+5WpzU1RcE81QocLTwHcMPIiMoUsJEPtI8+obPWqRZRlNK7+kLoqskejut3UWCeg1msh3L6PYrn54qsf2WbO3thYOjrpTeTGK1Oea4ikSQ/EaSX7t1qwiZfeC9W6ft9dO71TSn/D3YS3hz7KPSNEct3+/vlDyVciS2/FLOEnwYSWpskXS7ai3YOSjB2WqwcEDEm+9cjEwRuqaGfGTineJdhrOW3c/2AjApnO6/BNxBkpqVXrfz1pWes91Lx73KkPZ+UTkP31qHyiw26zFt2fEacGiWiPtWHXWNXvwuIIwpETNmDbPhuZhhAcvG+RWrJj3Wm2x99Vt+QXLYrS9XXdAVu4YDCCehIpztbHefRVH+a07dX22sc/efoLy+/daU5+pswh+I8vRXQt3joDyZVbeW015ztaxLgHU3/eZbnT3Tn6uuULYGwoF/z+lo7wYdF16AHes00GuuO/V3Qxui2bP0ULP1bqjTYK5yS2Gvm5vu/6sQ1IVzKa67KwTXEJK3GVu6KLWd14H0ZRjB6eovj4rmqz/gci7+BQ==</diagram></mxfile>

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 39 KiB

View File

@ -1,58 +0,0 @@
# QMK Configurator: Step by Step
This page describes the steps for building your firmware in QMK Configurator.
## Step 1: Select Your Keyboard
Click the drop down box and select the keyboard you want to create a keymap for.
?> If your keyboard has several versions, make sure you select the correct one.
I'll say that again because it's important:
!> **MAKE SURE YOU SELECT THE RIGHT VERSION!**
If your keyboard has been advertised to be powered by QMK but is not in the list, chances are a developer hasn't gotten to it yet or we haven't had a chance to merge it in yet. File an issue at [qmk_firmware](https://github.com/qmk/qmk_firmware/issues) requesting to support that particular keyboard, if there is no active [Pull Request](https://github.com/qmk/qmk_firmware/pulls?q=is%3Aopen+is%3Apr+label%3Akeyboard) for it. There are also QMK powered keyboards that are in their manufacturer's own GitHub accounts. Double check for that as well. <!-- FIXME(skullydazed): This feels too wordy and I'm not sure we want to encourage these kinds of issues. Also, should we prompt them to bug the manufacutrer? -->
## Step 2: Select Your Keyboard Layout
Choose the layout that best represents the keymap you want to create. Some keyboards do not have enough layouts or correct layouts defined yet. They will be supported in the future.
!> Sometimes there isn't a layout that supports your exact build. In that case select `LAYOUT_all`.
## Step 3: Name Your Keymap
Call this keymap what you want.
?> If you are running into issues when compiling, it may be worth changing this name, as it may already exist in the QMK Firmware repo.
## Step 4: Define Your Keymap
Keycode Entry is accomplished in one of 3 ways:
1. Drag and drop
2. Clicking on an empty spot on the layout, then clicking the keycode you desire
3. Clicking on an empty spot on the layout, then pressing the physical key on your keyboard
?> Hover your mouse over a key and a short blurb will tell you what that keycode does. For a more verbose description please see:
* [Basic Keycode Reference](keycodes_basic.md)
* [Advanced Keycode Reference](feature_advanced_keycodes.md)
!> If your selected layout doesn't match your physical build leave the unused keys blank. If you're not sure which key is in use, for example you have a one backspace key but `LAYOUT_all` has 2 keys, put the same keycode in both locations.
## Step 5: Save Your Keymap for Future Changes
When you're satisfied with your keymap or just want to work on it later, press the `Download this QMK Keymap JSON File` button. It will save your keymap to your computer. You can then load this .json file in the future by pressing the `Upload a QMK Keymap JSON File` button.
!> **CAUTION:** This is not the same type of .json file used for kbfirmware.com or any other tool. If you try to use this for those tools, or the .json from those tools with QMK Configurator, you will encounter problems.
## Step 6: Compile Your Firmware File
Press the green `Compile` button.
When the compilation is done, you will be able to press the green `Download Firmware` button.
## Next steps: Flashing Your Keyboard
Please refer to [Flashing Firmware](newbs_flashing.md).

View File

@ -1,26 +0,0 @@
# Configurator Troubleshooting
## My .json file is not working
If the .json file was generated with QMK Configurator, congratulations you have stumbled upon a bug. File an issue at [qmk_configurator](https://github.com/qmk/qmk_configurator/issues).
If not... how did you miss the big bold message at the top saying not to use other .json files?
## There are extra spaces in my layout? What do I do?
If you're referring to having three spots for space bar, the best course of action is to just fill them all with Space. The same can be done for Backspace and Shift keys.
## What is the keycode for...
Please see:
* [Basic Keycode Reference](keycodes_basic.md)
* [Advanced Keycode Reference](feature_advanced_keycodes.md)
## It won't compile
Please double check the other layers of your keymap to make sure there are no random keys present.
## Problems and Bugs
We are always accepting customer requests and bug reports. Please file them at [qmk_configurator](https://github.com/qmk/qmk_configurator/issues).

View File

@ -1,168 +0,0 @@
# How to Contribute
👍🎉 First off, thanks for taking the time to read this and contribute! 🎉👍
Third-party contributions help us grow and improve QMK. We want to make the pull request and contribution process useful and easy for both contributors and maintainers. To this end we've put together some guidelines for contributors to help your pull request be accepted without major changes.
* [Project Overview](#project-overview)
* [Coding Conventions](#coding-conventions)
* [General Guidelines](#general-guidelines)
* [What does the Code of Conduct mean for me?](#what-does-the-code-of-conduct-mean-for-me)
## I Don't Want to Read This Whole Thing! I Just Have a Question!
If you'd like to ask questions about QMK you can do so on the [OLKB Subreddit](https://reddit.com/r/olkb) or on [Discord](https://discord.gg/Uq7gcHh).
Please keep these things in mind:
* It may take several hours for someone to respond to your question. Please be patient!
* Everyone involved with QMK is donating their time and energy. We don't get paid to work on or answer questions about QMK.
* Try to ask your question so it's as easy to answer as possible. If you're not sure how to do that these are some good guides:
* https://opensource.com/life/16/10/how-ask-technical-questions
* http://www.catb.org/esr/faqs/smart-questions.html
# Project Overview
QMK is largely written in C, with specific features and parts written in C++. It targets embedded processors found in keyboards, particularly AVR ([LUFA](https://www.fourwalledcubicle.com/LUFA.php)) and ARM ([ChibiOS](https://www.chibios.org)). If you are already well versed in Arduino programming you'll find a lot of the concepts and limitations familiar. Prior experience with Arduino is not required to successfully contribute to QMK.
<!-- FIXME: We should include a list of resources for learning C here. -->
# Where Can I Go for Help?
If you need help you can [open an issue](https://github.com/qmk/qmk_firmware/issues) or [chat on Discord](https://discord.gg/Uq7gcHh).
# How Do I Make a Contribution?
Never made an open source contribution before? Wondering how contributions work in QMK? Here's a quick rundown!
0. Sign up for a [GitHub](https://github.com) account.
1. Put together a keymap to contribute, [find an issue](https://github.com/qmk/qmk_firmware/issues) you are interested in addressing, or [a feature](https://github.com/qmk/qmk_firmware/issues?q=is%3Aopen+is%3Aissue+label%3Afeature) you would like to add.
2. Fork the repository associated with the issue to your GitHub account. This means that you will have a copy of the repository under `your-GitHub-username/qmk_firmware`.
3. Clone the repository to your local machine using `git clone https://github.com/github-username/repository-name.git`.
4. If you're working on a new feature consider opening an issue to talk with us about the work you're about to undertake.
5. Create a new branch for your fix using `git checkout -b branch-name-here`.
6. Make the appropriate changes for the issue you are trying to address or the feature that you want to add.
7. Use `git add insert-paths-of-changed-files-here` to add the file contents of the changed files to the "snapshot" git uses to manage the state of the project, also known as the index.
8. Use `git commit -m "Insert a short message of the changes made here"` to store the contents of the index with a descriptive message.
9. Push the changes to your repository on GitHub using `git push origin branch-name-here`.
10. Submit a pull request to [QMK Firmware](https://github.com/qmk/qmk_firmware/pull/new/master).
11. Title the pull request with a short description of the changes made and the issue or bug number associated with your change. For example, you can title an issue like so "Added more log outputting to resolve #4352".
12. In the description of the pull request explain the changes that you made, any issues you think exist with the pull request you made, and any questions you have for the maintainer. It's OK if your pull request is not perfect (no pull request is), the reviewer will be able to help you fix any problems and improve it!
13. Wait for the pull request to be reviewed by a maintainer.
14. Make changes to the pull request if the reviewing maintainer recommends them.
15. Celebrate your success after your pull request is merged!
# Coding Conventions
Most of our style is pretty easy to pick up on. If you are familiar with either C or Python you should not have too much trouble with our local styles.
* [Coding Conventions - C](coding_conventions_c.md)
* [Coding Conventions - Python](coding_conventions_python.md)
# General Guidelines
We have a few different types of changes in QMK, each requiring a different level of rigor. We'd like you to keep the following guidelines in mind no matter what type of change you're making.
* Separate PRs into logical units. For example, do not submit one PR covering two separate features, instead submit a separate PR for each feature.
* Check for unnecessary whitespace with `git diff --check` before committing.
* Make sure your code change actually compiles.
* Keymaps: Make sure that `make keyboard:your_new_keymap` does not return any errors.
* Keyboards: Make sure that `make keyboard:all` does not return any errors.
* Core: Make sure that `make all` does not return any errors.
* Make sure commit messages are understandable on their own. You should put a short description (no more than 70 characters) on the first line, the second line should be empty, and on the 3rd and later lines you should describe your commit in detail, if required. Example:
```
Adjust the fronzlebop for the kerpleplork
The kerpleplork was intermittently failing with error code 23. The root cause was the fronzlebop setting, which causes the kerpleplork to activate every N iterations.
Limited experimentation on the devices I have available shows that 7 is high enough to avoid confusing the kerpleplork, but I'd like to get some feedback from people with ARM devices to be sure.
```
!> **IMPORTANT:** If you would like to contribute a bugfix or improvement to user code, such as non-default keymaps, userspace and layouts, be sure to tag the original submitter of the code in your PR. Many users, regardless of skill level with Git and GitHub, may be confused or frustrated at their code being modified without their knowledge.
## Documentation
Documentation is one of the easiest ways to get started contributing to QMK. Finding places where the documentation is wrong or incomplete and fixing those is easy! We also very badly need someone to edit our documentation, so if you have editing skills but aren't sure where or how to jump in please [reach out for help](#where-can-i-go-for-help)!
You'll find all our documentation in the `qmk_firmware/docs` directory, or if you'd rather use a web based workflow you can click the "Edit this page" link at the bottom of each page on https://docs.qmk.fm/.
When providing code examples in your documentation, try to observe naming conventions used elsewhere in the docs. For example, standardizing enums as `my_layers` or `my_keycodes` for consistency:
```c
enum my_layers {
_FIRST_LAYER,
_SECOND_LAYER
};
enum my_keycodes {
FIRST_LAYER = SAFE_RANGE,
SECOND_LAYER
};
```
### Previewing the Documentation :id=previewing-the-documentation
Before opening a pull request, you can preview your changes if you have set up the development environment by running this command from the `qmk_firmware/` folder:
qmk docs
or if you only have Python 3 installed:
python3 -m http.server 8936 --directory docs
and navigating to `http://localhost:8936/`.
## Keymaps
Most first-time QMK contributors start with their personal keymaps. We try to keep keymap standards pretty casual (keymaps, after all, reflect the personality of their creators) but we do ask that you follow these guidelines to make it easier for others to discover and learn from your keymap.
* Write a `readme.md` using [the template](documentation_templates.md).
* All Keymap PR's are squashed, so if you care about how your commits are squashed you should do it yourself
* Do not lump features in with keymap PR's. Submit the feature first and then a second PR for the keymap.
* Do not include `Makefile`s in your keymap folder (they're no longer used)
* Update copyrights in file headers (look for `%YOUR_NAME%`)
## Keyboards
Keyboards are the raison d'être for QMK. Some keyboards are community maintained, while others are maintained by the people responsible for making a particular keyboard. The `readme.md` should tell you who maintains a particular keyboard. If you have questions relating to a particular keyboard you can [Open An Issue](https://github.com/qmk/qmk_firmware/issues) and tag the maintainer in your question.
We also ask that you follow these guidelines:
* Write a `readme.md` using [the template](documentation_templates.md).
* Keep the number of commits reasonable or we will squash your PR
* Do not lump core features in with new keyboards. Submit the feature first and then submit a separate PR for the keyboard.
* Name `.c`/`.h` file after the immediate parent folder, eg `/keyboards/<kb1>/<kb2>/<kb2>.[ch]`
* Do not include `Makefile`s in your keyboard folder (they're no longer used)
* Update copyrights in file headers (look for `%YOUR_NAME%`)
## Quantum/TMK Core
Before you put a lot of work into building your new feature you should make sure you are implementing it in the best way. You can get a basic understanding of QMK by reading [Understanding QMK](understanding_qmk.md), which will take you on a tour of the QMK program flow. From here you should talk to us to get a sense of the best way to implement your idea. There are two main ways to do this:
* [Chat on Discord](https://discord.gg/Uq7gcHh)
* [Open an Issue](https://github.com/qmk/qmk_firmware/issues/new)
Feature and Bug Fix PR's affect all keyboards. We are also in the process of restructuring QMK. For this reason it is especially important for significant changes to be discussed before implementation has happened. If you open a PR without talking to us first please be prepared to do some significant rework if your choices do not mesh well with our planned direction.
Here are some things to keep in mind when working on your feature or bug fix.
* **Disabled by default** - memory is a pretty limited on most chips QMK supports, and it's important that current keymaps aren't broken, so please allow your feature to be turned **on**, rather than being turned off. If you think it should be on by default, or reduces the size of the code, please talk with us about it.
* **Compile locally before submitting** - hopefully this one is obvious, but things need to compile! You should always make sure your changes compile before opening a pull request.
* **Consider revisions and different chip-bases** - there are several keyboards that have revisions that allow for slightly different configurations, and even different chip-bases. Try to make a feature supported in ARM and AVR, or automatically disabled on platforms it doesn't work on.
* **Explain your feature** - Document it in `docs/`, either as a new file or as part of an existing file. If you don't document it other people won't be able to benefit from your hard work.
We also ask that you follow these guidelines:
* Keep the number of commits reasonable or we will squash your PR
* Do not lump keyboards or keymaps in with core changes. Submit your core changes first.
* Write [Unit Tests](unit_testing.md) for your feature
* Follow the style of the file you are editing. If the style is unclear or there are mixed styles you should conform to the [coding conventions](#coding-conventions) above.
## Refactoring
To maintain a clear vision of how things are laid out in QMK we try to plan out refactors in-depth and have a collaborator make the changes. If you have an idea for refactoring, or suggestions, [open an issue](https://github.com/qmk/qmk_firmware/issues), we'd love to talk about how QMK can be improved.
# What Does the Code of Conduct Mean for Me?
Our [Code of Conduct](https://qmk.fm/coc/) means that you are responsible for treating everyone on the project with respect and courtesy regardless of their identity. If you are the victim of any inappropriate behavior or comments as described in our Code of Conduct, we are here for you and will do the best to ensure that the abuser is reprimanded appropriately, per our code.

View File

@ -1,108 +0,0 @@
# Custom Matrix
QMK provides a mechanism to supplement or replace the default matrix scanning routine with your own code.
The reasons to use this feature include:
* Extra hardware between the keyboard's switches and MCU pins
* I/O multiplexer
* Line decoder
* Irregular switch matrix
* Simultaneous use of `COL2ROW` and `ROW2COL`
## Prerequisites
Implementing custom matrix usually involves compilation of an additional source file. It is recommended that for consistency, this file is called `matrix.c`.
Add a new file to your keyboard directory:
```
keyboards/<keyboard>/matrix.c
```
And to configure compilation for the new file, add this to your `rules.mk`:
```make
SRC += matrix.c
```
## 'lite'
Provides a default implementation for various scanning functions, reducing the boilerplate code when implementing custom matrix.
To configure it, add this to your `rules.mk`:
```make
CUSTOM_MATRIX = lite
```
And implement the following functions in a `matrix.c` file in your keyboard folder:
```c
void matrix_init_custom(void) {
// TODO: initialize hardware here
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
bool matrix_has_changed = false;
// TODO: add matrix scanning routine here
return matrix_has_changed;
}
```
## Full Replacement
When more control over the scanning routine is required, you can choose to implement the full scanning routine.
To configure it, add this to your rules.mk:
```make
CUSTOM_MATRIX = yes
```
And implement the following functions in a `matrix.c` file in your keyboard folder:
```c
matrix_row_t matrix_get_row(uint8_t row) {
// TODO: return the requested row data
}
void matrix_print(void) {
// TODO: use print() to dump the current matrix state to console
}
void matrix_init(void) {
// TODO: initialize hardware and global matrix state here
// Unless hardware debouncing - Init the configured debounce routine
debounce_init(MATRIX_ROWS);
// This *must* be called for correct keyboard behavior
matrix_init_quantum();
}
uint8_t matrix_scan(void) {
bool matrix_has_changed = false;
// TODO: add matrix scanning routine here
// Unless hardware debouncing - use the configured debounce routine
debounce(raw_matrix, matrix, MATRIX_ROWS, changed);
// This *must* be called for correct keyboard behavior
matrix_scan_quantum();
return matrix_has_changed;
}
```
And also provide defaults for the following callbacks:
```c
__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }
__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }
__attribute__((weak)) void matrix_init_user(void) {}
__attribute__((weak)) void matrix_scan_user(void) {}
```

View File

@ -1,473 +0,0 @@
# How to Customize Your Keyboard's Behavior
For a lot of people a custom keyboard is about more than sending button presses to your computer. You want to be able to do things that are more complex than simple button presses and macros. QMK has hooks that allow you to inject code, override functionality, and otherwise customize how your keyboard behaves in different situations.
This page does not assume any special knowledge about QMK, but reading [Understanding QMK](understanding_qmk.md) will help you understand what is going on at a more fundamental level.
## A Word on Core vs Keyboards vs Keymap :id=a-word-on-core-vs-keyboards-vs-keymap
We have structured QMK as a hierarchy:
* Core (`_quantum`)
* Keyboard/Revision (`_kb`)
* Keymap (`_user`)
Each of the functions described below can be defined with a `_kb()` suffix or a `_user()` suffix. We intend for you to use the `_kb()` suffix at the Keyboard/Revision level, while the `_user()` suffix should be used at the Keymap level.
When defining functions at the Keyboard/Revision level it is important that your `_kb()` implementation call `_user()` before executing anything else- otherwise the keymap level function will never be called.
# Custom Keycodes
By far the most common task is to change the behavior of an existing keycode or to create a new keycode. From a code standpoint the mechanism for each is very similar.
## Defining a New Keycode
The first step to creating your own custom keycode(s) is to enumerate them. This means both naming them and assigning a unique number to that keycode. Rather than limit custom keycodes to a fixed range of numbers QMK provides the `SAFE_RANGE` macro. You can use `SAFE_RANGE` when enumerating your custom keycodes to guarantee that you get a unique number.
Here is an example of enumerating 2 keycodes. After adding this block to your `keymap.c` you will be able to use `FOO` and `BAR` inside your keymap.
```c
enum my_keycodes {
FOO = SAFE_RANGE,
BAR
};
```
## Programming the Behavior of Any Keycode :id=programming-the-behavior-of-any-keycode
When you want to override the behavior of an existing key, or define the behavior for a new key, you should use the `process_record_kb()` and `process_record_user()` functions. These are called by QMK during key processing before the actual key event is handled. If these functions return `true` QMK will process the keycodes as usual. That can be handy for extending the functionality of a key rather than replacing it. If these functions return `false` QMK will skip the normal key handling, and it will be up to you to send any key up or down events that are required.
These function are called every time a key is pressed or released.
### Example `process_record_user()` Implementation
This example does two things. It defines the behavior for a custom keycode called `FOO`, and it supplements our Enter key by playing a tone whenever it is pressed.
```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case FOO:
if (record->event.pressed) {
// Do something when pressed
} else {
// Do something else when release
}
return false; // Skip all further processing of this key
case KC_ENTER:
// Play a tone when enter is pressed
if (record->event.pressed) {
PLAY_SONG(tone_qwerty);
}
return true; // Let QMK send the enter press/release events
default:
return true; // Process all other keycodes normally
}
}
```
### `process_record_*` Function Documentation
* Keyboard/Revision: `bool process_record_kb(uint16_t keycode, keyrecord_t *record)`
* Keymap: `bool process_record_user(uint16_t keycode, keyrecord_t *record)`
The `keycode` argument is whatever is defined in your keymap, eg `MO(1)`, `KC_L`, etc. You should use a `switch...case` block to handle these events.
The `record` argument contains information about the actual press:
```c
keyrecord_t record {
keyevent_t event {
keypos_t key {
uint8_t col
uint8_t row
}
bool pressed
uint16_t time
}
}
```
# Keyboard Initialization Code
There are several steps in the keyboard initialization process. Depending on what you want to do, it will influence which function you should use.
These are the three main initialization functions, listed in the order that they're called.
* `keyboard_pre_init_*` - Happens before most anything is started. Good for hardware setup that you want running very early.
* `matrix_init_*` - Happens midway through the firmware's startup process. Hardware is initialized, but features may not be yet.
* `keyboard_post_init_*` - Happens at the end of the firmware's startup process. This is where you'd want to put "customization" code, for the most part.
!> For most people, the `keyboard_post_init_user` function is what you want to call. For instance, this is where you want to set up things for RGB Underglow.
## Keyboard Pre Initialization code
This runs very early during startup, even before the USB has been started.
Shortly after this, the matrix is initialized.
For most users, this shouldn't be used, as it's primarily for hardware oriented initialization.
However, if you have hardware stuff that you need initialized, this is the best place for it (such as initializing LED pins).
### Example `keyboard_pre_init_user()` Implementation
This example, at the keyboard level, sets up B0, B1, B2, B3, and B4 as LED pins.
```c
void keyboard_pre_init_user(void) {
// Call the keyboard pre init code.
// Set our LED pins as output
setPinOutput(B0);
setPinOutput(B1);
setPinOutput(B2);
setPinOutput(B3);
setPinOutput(B4);
}
```
### `keyboard_pre_init_*` Function Documentation
* Keyboard/Revision: `void keyboard_pre_init_kb(void)`
* Keymap: `void keyboard_pre_init_user(void)`
## Matrix Initialization Code
This is called when the matrix is initialized, and after some of the hardware has been set up, but before many of the features have been initialized.
This is useful for setting up stuff that you may need elsewhere, but isn't hardware related nor is dependant on where it's started.
### `matrix_init_*` Function Documentation
* Keyboard/Revision: `void matrix_init_kb(void)`
* Keymap: `void matrix_init_user(void)`
### Low-level Matrix Overrides Function Documentation :id=low-level-matrix-overrides
* GPIO pin initialisation: `void matrix_init_pins(void)`
* This needs to perform the low-level initialisation of all row and column pins. By default this will initialise the input/output state of each of the GPIO pins listed in `MATRIX_ROW_PINS` and `MATRIX_COL_PINS`, based on whether or not the keyboard is set up for `ROW2COL`, `COL2ROW`, or `DIRECT_PINS`. Should the keyboard designer override this function, no initialisation of pin state will occur within QMK itself, instead deferring to the keyboard's override.
* `COL2ROW`-based row reads: `void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)`
* `ROW2COL`-based column reads: `void matrix_read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col, matrix_row_t row_shifter)`
* `DIRECT_PINS`-based reads: `void matrix_read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)`
* These three functions need to perform the low-level retrieval of matrix state of relevant input pins, based on the matrix type. Only one of the functions should be implemented, if needed. By default this will iterate through `MATRIX_ROW_PINS` and `MATRIX_COL_PINS`, configuring the inputs and outputs based on whether or not the keyboard is set up for `ROW2COL`, `COL2ROW`, or `DIRECT_PINS`. Should the keyboard designer override this function, no manipulation of matrix GPIO pin state will occur within QMK itself, instead deferring to the keyboard's override.
## Keyboard Post Initialization code
This is ran as the very last task in the keyboard initialization process. This is useful if you want to make changes to certain features, as they should be initialized by this point.
### Example `keyboard_post_init_user()` Implementation
This example, running after everything else has initialized, sets up the rgb underglow configuration.
```c
void keyboard_post_init_user(void) {
// Call the post init code.
rgblight_enable_noeeprom(); // enables Rgb, without saving settings
rgblight_sethsv_noeeprom(180, 255, 255); // sets the color to teal/cyan without saving
rgblight_mode_noeeprom(RGBLIGHT_MODE_BREATHING + 3); // sets mode to Fast breathing without saving
}
```
### `keyboard_post_init_*` Function Documentation
* Keyboard/Revision: `void keyboard_post_init_kb(void)`
* Keymap: `void keyboard_post_init_user(void)`
# Matrix Scanning Code
Whenever possible you should customize your keyboard by using `process_record_*()` and hooking into events that way, to ensure that your code does not have a negative performance impact on your keyboard. However, in rare cases it is necessary to hook into the matrix scanning. Be extremely careful with the performance of code in these functions, as it will be called at least 10 times per second.
### Example `matrix_scan_*` Implementation
This example has been deliberately omitted. You should understand enough about QMK internals to write this without an example before hooking into such a performance sensitive area. If you need help please [open an issue](https://github.com/qmk/qmk_firmware/issues/new) or [chat with us on Discord](https://discord.gg/Uq7gcHh).
### `matrix_scan_*` Function Documentation
* Keyboard/Revision: `void matrix_scan_kb(void)`
* Keymap: `void matrix_scan_user(void)`
This function gets called at every matrix scan, which is basically as often as the MCU can handle. Be careful what you put here, as it will get run a lot.
You should use this function if you need custom matrix scanning code. It can also be used for custom status output (such as LEDs or a display) or other functionality that you want to trigger regularly even when the user isn't typing.
# Keyboard housekeeping
* Keyboard/Revision: `void housekeeping_task_kb(void)`
* Keymap: `void housekeeping_task_user(void)`
This function gets called at the end of all QMK processing, before starting the next iteration. You can safely assume that QMK has dealt with the last matrix scan at the time that these functions are invoked -- layer states have been updated, USB reports have been sent, LEDs have been updated, and displays have been drawn.
Similar to `matrix_scan_*`, these are called as often as the MCU can handle. To keep your board responsive, it's suggested to do as little as possible during these function calls, potentially throtting their behaviour if you do indeed require implementing something special.
# Keyboard Idling/Wake Code
If the board supports it, it can be "idled", by stopping a number of functions. A good example of this is RGB lights or backlights. This can save on power consumption, or may be better behavior for your keyboard.
This is controlled by two functions: `suspend_power_down_*` and `suspend_wakeup_init_*`, which are called when the system board is idled and when it wakes up, respectively.
### Example suspend_power_down_user() and suspend_wakeup_init_user() Implementation
```c
void suspend_power_down_user(void) {
// code will run multiple times while keyboard is suspended
}
void suspend_wakeup_init_user(void) {
// code will run on keyboard wakeup
}
```
### Keyboard suspend/wake Function Documentation
* Keyboard/Revision: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`
* Keymap: `void suspend_power_down_kb(void)` and `void suspend_wakeup_init_user(void)`
# Layer Change Code :id=layer-change-code
This runs code every time that the layers get changed. This can be useful for layer indication, or custom layer handling.
### Example `layer_state_set_*` Implementation
This example shows how to set the [RGB Underglow](feature_rgblight.md) lights based on the layer, using the Planck as an example.
```c
layer_state_t layer_state_set_user(layer_state_t state) {
switch (get_highest_layer(state)) {
case _RAISE:
rgblight_setrgb (0x00, 0x00, 0xFF);
break;
case _LOWER:
rgblight_setrgb (0xFF, 0x00, 0x00);
break;
case _PLOVER:
rgblight_setrgb (0x00, 0xFF, 0x00);
break;
case _ADJUST:
rgblight_setrgb (0x7A, 0x00, 0xFF);
break;
default: // for any other layers, or the default layer
rgblight_setrgb (0x00, 0xFF, 0xFF);
break;
}
return state;
}
```
Use the `IS_LAYER_ON_STATE(state, layer)` and `IS_LAYER_OFF_STATE(state, layer)` macros to check the status of a particular layer.
Outside of `layer_state_set_*` functions, you can use the `IS_LAYER_ON(layer)` and `IS_LAYER_OFF(layer)` macros to check global layer state.
### `layer_state_set_*` Function Documentation
* Keyboard/Revision: `layer_state_t layer_state_set_kb(layer_state_t state)`
* Keymap: `layer_state_t layer_state_set_user(layer_state_t state)`
The `state` is the bitmask of the active layers, as explained in the [Keymap Overview](keymap.md#keymap-layer-status)
# Persistent Configuration (EEPROM)
This allows you to configure persistent settings for your keyboard. These settings are stored in the EEPROM of your controller, and are retained even after power loss. The settings can be read with `eeconfig_read_kb` and `eeconfig_read_user`, and can be written to using `eeconfig_update_kb` and `eeconfig_update_user`. This is useful for features that you want to be able to toggle (like toggling rgb layer indication). Additionally, you can use `eeconfig_init_kb` and `eeconfig_init_user` to set the default values for the EEPROM.
The complicated part here, is that there are a bunch of ways that you can store and access data via EEPROM, and there is no "correct" way to do this. However, you only have a DWORD (4 bytes) for each function.
Keep in mind that EEPROM has a limited number of writes. While this is very high, it's not the only thing writing to the EEPROM, and if you write too often, you can potentially drastically shorten the life of your MCU.
* If you don't understand the example, then you may want to avoid using this feature, as it is rather complicated.
### Example Implementation
This is an example of how to add settings, and read and write it. We're using the user keymap for the example here. This is a complex function, and has a lot going on. In fact, it uses a lot of the above functions to work!
In your keymap.c file, add this to the top:
```c
typedef union {
uint32_t raw;
struct {
bool rgb_layer_change :1;
};
} user_config_t;
user_config_t user_config;
```
This sets up a 32 bit structure that we can store settings with in memory, and write to the EEPROM. Using this removes the need to define variables, since they're defined in this structure. Remember that `bool` (boolean) values use 1 bit, `uint8_t` uses 8 bits, `uint16_t` uses up 16 bits. You can mix and match, but changing the order can cause issues, as it will change the values that are read and written.
We're using `rgb_layer_change`, for the `layer_state_set_*` function, and use `keyboard_post_init_user` and `process_record_user` to configure everything.
Now, using the `keyboard_post_init_user` code above, you want to add `eeconfig_read_user()` to it, to populate the structure you've just created. And you can then immediately use this structure to control functionality in your keymap. And It should look like:
```c
void keyboard_post_init_user(void) {
// Call the keymap level matrix init.
// Read the user config from EEPROM
user_config.raw = eeconfig_read_user();
// Set default layer, if enabled
if (user_config.rgb_layer_change) {
rgblight_enable_noeeprom();
rgblight_sethsv_noeeprom_cyan();
rgblight_mode_noeeprom(1);
}
}
```
The above function will use the EEPROM config immediately after reading it, to set the default layer's RGB color. The "raw" value of it is converted in a usable structure based on the "union" that you created above.
```c
layer_state_t layer_state_set_user(layer_state_t state) {
switch (get_highest_layer(state)) {
case _RAISE:
if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_magenta(); rgblight_mode_noeeprom(1); }
break;
case _LOWER:
if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_red(); rgblight_mode_noeeprom(1); }
break;
case _PLOVER:
if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_green(); rgblight_mode_noeeprom(1); }
break;
case _ADJUST:
if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_white(); rgblight_mode_noeeprom(1); }
break;
default: // for any other layers, or the default layer
if (user_config.rgb_layer_change) { rgblight_sethsv_noeeprom_cyan(); rgblight_mode_noeeprom(1); }
break;
}
return state;
}
```
This will cause the RGB underglow to be changed ONLY if the value was enabled. Now to configure this value, create a new keycode for `process_record_user` called `RGB_LYR`. Additionally, we want to make sure that if you use the normal RGB codes, that it turns off Using the example above, make it look this:
```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case FOO:
if (record->event.pressed) {
// Do something when pressed
} else {
// Do something else when release
}
return false; // Skip all further processing of this key
case KC_ENTER:
// Play a tone when enter is pressed
if (record->event.pressed) {
PLAY_SONG(tone_qwerty);
}
return true; // Let QMK send the enter press/release events
case RGB_LYR: // This allows me to use underglow as layer indication, or as normal
if (record->event.pressed) {
user_config.rgb_layer_change ^= 1; // Toggles the status
eeconfig_update_user(user_config.raw); // Writes the new status to EEPROM
if (user_config.rgb_layer_change) { // if layer state indication is enabled,
layer_state_set(layer_state); // then immediately update the layer color
}
}
return false;
case RGB_MODE_FORWARD ... RGB_MODE_GRADIENT: // For any of the RGB codes (see quantum_keycodes.h, L400 for reference)
if (record->event.pressed) { //This disables layer indication, as it's assumed that if you're changing this ... you want that disabled
if (user_config.rgb_layer_change) { // only if this is enabled
user_config.rgb_layer_change = false; // disable it, and
eeconfig_update_user(user_config.raw); // write the setings to EEPROM
}
}
return true; break;
default:
return true; // Process all other keycodes normally
}
}
```
And lastly, you want to add the `eeconfig_init_user` function, so that when the EEPROM is reset, you can specify default values, and even custom actions. To force an EEPROM reset, use the `EEP_RST` keycode or [Bootmagic Lite](feature_bootmagic.md) functionallity. For example, if you want to set rgb layer indication by default, and save the default valued.
```c
void eeconfig_init_user(void) { // EEPROM is getting reset!
user_config.raw = 0;
user_config.rgb_layer_change = true; // We want this enabled by default
eeconfig_update_user(user_config.raw); // Write default value to EEPROM now
// use the non noeeprom versions, to write these values to EEPROM too
rgblight_enable(); // Enable RGB by default
rgblight_sethsv_cyan(); // Set it to CYAN by default
rgblight_mode(1); // set to solid by default
}
```
And you're done. The RGB layer indication will only work if you want it to. And it will be saved, even after unplugging the board. And if you use any of the RGB codes, it will disable the layer indication, so that it stays on the mode and color that you set it to.
### 'EECONFIG' Function Documentation
* Keyboard/Revision: `void eeconfig_init_kb(void)`, `uint32_t eeconfig_read_kb(void)` and `void eeconfig_update_kb(uint32_t val)`
* Keymap: `void eeconfig_init_user(void)`, `uint32_t eeconfig_read_user(void)` and `void eeconfig_update_user(uint32_t val)`
The `val` is the value of the data that you want to write to EEPROM. And the `eeconfig_read_*` function return a 32 bit (DWORD) value from the EEPROM.
### Deferred Execution :id=deferred-execution
QMK has the ability to execute a callback after a specified period of time, rather than having to manually manage timers. To enable this functionality, set `DEFERRED_EXEC_ENABLE = yes` in rules.mk.
#### Deferred executor callbacks
All _deferred executor callbacks_ have a common function signature and look like:
```c
uint32_t my_callback(uint32_t trigger_time, void *cb_arg) {
/* do something */
bool repeat = my_deferred_functionality();
return repeat ? 500 : 0;
}
```
The first argument `trigger_time` is the intended time of execution. If other delays prevent executing at the exact trigger time, this allows for "catch-up" or even skipping intervals, depending on the required behaviour.
The second argument `cb_arg` is the same argument passed into `defer_exec()` below, and can be used to access state information from the original call context.
The return value is the number of milliseconds to use if the function should be repeated -- if the callback returns `0` then it's automatically unregistered. In the example above, a hypothetical `my_deferred_functionality()` is invoked to determine if the callback needs to be repeated -- if it does, it reschedules for a `500` millisecond delay, otherwise it informs the deferred execution background task that it's done, by returning `0`.
?> Note that the returned delay will be applied to the intended trigger time, not the time of callback invocation. This allows for generally consistent timing even in the face of occasional late execution.
#### Deferred executor registration
Once a callback has been defined, it can be scheduled using the following API:
```c
deferred_token my_token = defer_exec(1500, my_callback, NULL);
```
The first argument is the number of milliseconds to wait until executing `my_callback` -- in the case above, `1500` milliseconds, or 1.5 seconds.
The third parameter is the `cb_arg` that gets passed to the callback at the point of execution. This value needs to be valid at the time the callback is invoked -- a local function value will be destroyed before the callback is executed and should not be used. If this is not required, `NULL` should be used.
The return value is a `deferred_token` that can consequently be used to cancel the deferred executor callback before it's invoked. If a failure occurs, the returned value will be `INVALID_DEFERRED_TOKEN`. Usually this will be as a result of supplying `0` to the delay, or a `NULL` for the callback. The other failure case is if there are too many deferred executions "in flight" -- this can be increased by changing the limit, described below.
#### Extending a deferred execution
The `deferred_token` returned by `defer_exec()` can be used to extend a the duration a pending execution waits before it gets invoked:
```c
// This will re-delay my_token's future execution such that it is invoked 800ms after the current time
extend_deferred_exec(my_token, 800);
```
#### Cancelling a deferred execution
The `deferred_token` returned by `defer_exec()` can be used to cancel a pending execution before it gets invoked:
```c
// This will cancel my_token's future execution
cancel_deferred_exec(my_token);
```
Once a token has been canceled, it should be considered invalid. Reusing the same token is not supported.
#### Deferred callback limits
There are a maximum number of deferred callbacks that can be scheduled, controlled by the value of the define `MAX_DEFERRED_EXECUTORS`.
If registrations fail, then you can increase this value in your keyboard or keymap `config.h` file, for example to 16 instead of the default 8:
```c
#define MAX_DEFERRED_EXECUTORS 16
```

View File

@ -1,91 +0,0 @@
# Data Driven Configuration
This page describes how QMK's data driven JSON configuration system works. It is aimed at developers who want to work on QMK itself.
## History
Historically QMK has been configured through a combination of two mechanisms- `rules.mk` and `config.h`. While this worked well when QMK was only a handful of keyboards we've grown to encompass nearly 1500 supported keyboards. That extrapolates out to 6000 configuration files under `keyboards/` alone! The freeform nature of these files and the unique patterns people have used to avoid duplication have made ongoing maintenance a challenge, and a large number of our keyboards follow patterns that are outdated and sometimes harder to understand.
We have also been working on bringing the power of QMK to people who aren't comformable with a CLI, and other projects such as VIA are working to make using QMK as easy as installing a program. These tools need information about how a keyboard is laid out or what pins and features are available so that users can take full advantage of QMK. We introduced `info.json` as a first step towards this. The QMK API is an effort to combine these 3 sources of information- `config.h`, `rules.mk`, and `info.json`- into a single source of truth that end-user tools can use.
Now we have support for generating `rules.mk` and `config.h` values from `info.json`, allowing us to have a single source of truth. This will allow us to use automated tooling to maintain keyboards saving a lot of time and maintenance work.
## Overview
On the C side of things nothing changes. When you need to create a new rule or define you follow the same process:
1. Add it to `docs/config_options.md`
1. Set a default in the appropriate core file
1. Add your ifdef statements as needed
You will then need to add support for your new configuration to `info.json`. The basic process is:
1. Add it to the schema in `data/schemas/keyboards.jsonschema`
1. Add a mapping in `data/maps`
1. (optional and discoraged) Add code to extract/generate it to:
* `lib/python/qmk/info.py`
* `lib/python/qmk/cli/generate/config_h.py`
* `lib/python/qmk/cli/generate/rules_mk.py`
## Adding an option to info.json
This section describes adding support for a `config.h`/`rules.mk` value to info.json.
### Add it to the schema
QMK maintains [jsonschema](https://json-schema.org/) files in `data/schemas`. The values that go into keyboard-specific `info.json` files are kept in `keyboard.jsonschema`. Any value you want to make available to end users to edit must go in here.
In some cases you can simply add a new top-level key. Some examples to follow are `keyboard_name`, `maintainer`, `processor`, and `url`. This is appropriate when your option is self-contained and not directly related to other options.
In other cases you should group like options together in an `object`. This is particularly true when adding support for a feature. Some examples to follow for this are `indicators`, `matrix_pins`, and `rgblight`. If you are not sure how to integrate your new option(s) [open an issue](https://github.com/qmk/qmk_firmware/issues/new?assignees=&labels=cli%2C+python&template=other_issues.md&title=) or [join #cli on Discord](https://discord.gg/heQPAgy) and start a conversation there.
### Add a mapping
In most cases you can add a simple mapping. These are maintained as JSON files in `data/mappings/info_config.json` and `data/mappings/info_rules.json`, and control mapping for `config.h` and `rules.mk`, respectively. Each mapping is keyed by the `config.h` or `rules.mk` variable, and the value is a hash with the following keys:
* `info_key`: (required) The location within `info.json` for this value. See below.
* `value_type`: (optional) Default `str`. The format for this variable's value. See below.
* `to_json`: (optional) Default `true`. Set to `false` to exclude this mapping from info.json
* `to_c`: (optional) Default `true`. Set to `false` to exclude this mapping from config.h
* `warn_duplicate`: (optional) Default `true`. Set to `false` to turn off warning when a value exists in both places
#### Info Key
We use JSON dot notation to address variables within info.json. For example, to access `info_json["rgblight"]["split_count"]` I would specify `rgblight.split_count`. This allows you to address deeply nested keys with a simple string.
Under the hood we use [Dotty Dict](https://dotty-dict.readthedocs.io/en/latest/), you can refer to that documentation for how these strings are converted to object access.
#### Value Types
By default we treat all values as simple strings. If your value is more complex you can use one of these types to intelligently parse the data:
* `array`: A comma separated array of strings
* `array.int`: A comma separated array of integers
* `int`: An integer
* `hex`: A number formatted as hex
* `list`: A space separate array of strings
* `mapping`: A hash of key/value pairs
### Add code to extract it
Most use cases can be solved by the mapping files described above. If yours can't you can instead write code to extract your config values.
Whenever QMK generates a complete `info.json` it extracts information from `config.h` and `rules.mk`. You will need to add code for your new config value to `lib/python/qmk/info.py`. Typically this means adding a new `_extract_<feature>()` function and then calling your function in either `_extract_config_h()` or `_extract_rules_mk()`.
If you are not sure how to edit this file or are not comfortable with Python [open an issue](https://github.com/qmk/qmk_firmware/issues/new?assignees=&labels=cli%2C+python&template=other_issues.md&title=) or [join #cli on Discord](https://discord.gg/heQPAgy) and someone can help you with this part.
### Add code to generate it :id=add-code-to-generate-it
The final piece of the puzzle is providing your new option to the build system. This is done by generating two files:
* `.build/obj_<keyboard>/src/info_config.h`
* `.build/obj_<keyboard>/src/rules.mk`
These two files are generated by the code here:
* `lib/python/qmk/cli/generate/config_h.py`
* `lib/python/qmk/cli/generate/rules_mk.py`
For `config.h` values you'll need to write a function for your rule(s) and call that function in `generate_config_h()`.
If you have a new top-level `info.json` key for `rules.mk` you can simply add your keys to `info_to_rules` at the top of `lib/python/qmk/cli/generate/rules_mk.py`. Otherwise you'll need to create a new if block for your feature in `generate_rules_mk()`.

View File

@ -1,64 +0,0 @@
# Documentation Best Practices
This page exists to document best practices when writing documentation for QMK. Following these guidelines will help to keep a consistent tone and style, which will in turn help other people more easily understand QMK.
# Page Opening
Your documentation page should generally start with an H1 heading, followed by a 1 paragraph description of what the user will find on this page. Keep in mind that this heading and paragraph will sit next to the Table of Contents, so keep the heading short and avoid long strings with no whitespace.
Example:
```
# My Page Title
This page covers my super cool feature. You can use this feature to make coffee, squeeze fresh oj, and have an egg mcmuffin and hashbrowns delivered from your local macca's by drone.
```
# Headings
Your page should generally have multiple "H1" headings. Only H1 and H2 headings will included in the Table of Contents, so plan them out appropriately. Excess width should be avoided in H1 and H2 headings to prevent the Table of Contents from getting too wide.
# Styled Hint Blocks
You can have styled hint blocks drawn around text to draw attention to it.
### Important
```
!> This is important
```
Renders as:
!> This is important
### General Tips
```
?> This is a helpful tip.
```
Renders as:
?> This is a helpful tip.
# Documenting Features
If you create a new feature for QMK, create a documentation page for it. It doesn't have to be very long, a few sentences describing your feature and a table listing any relevant keycodes is enough. Here is a basic template:
```markdown
# My Cool Feature
This page describes my cool feature. You can use my cool feature to make coffee and order cream and sugar to be delivered via drone.
## My Cool Feature Keycodes
|Long Name|Short Name|Description|
|---------|----------|-----------|
|KC_COFFEE||Make Coffee|
|KC_CREAM||Order Cream|
|KC_SUGAR||Order Sugar|
```
Place your documentation into `docs/feature_<my_cool_feature>.md`, and add that file to the appropriate place in `docs/_summary.md`. If you have added any keycodes be sure to add them to `docs/keycodes.md` with a link back to your feature page.

View File

@ -1,40 +0,0 @@
# Documentation Templates
This page documents the templates you should use when submitting new Keymaps and Keyboards to QMK.
## Keymap `readme.md` Template :id=keyboard-readmemd-template
Most keymaps have an image depicting the layout. You can use [Keyboard Layout Editor](https://keyboard-layout-editor.com) to create an image. Upload it to [Imgur](https://imgur.com) or another hosting service, please do not include images in your Pull Request.
Below the image you should write a short description to help people understand your keymap.
```
![Clueboard Layout Image](https://i.imgur.com/7Capi8W.png)
# Default Clueboard Layout
This is the default layout that comes flashed on every Clueboard. For the most
part it's a straightforward and easy to follow layout. The only unusual key is
the key in the upper left, which sends Escape normally, but Grave when any of
the Ctrl, Alt, or GUI modifiers are held down.
```
## Keyboard `readme.md` Template
```
# Planck
![Planck](https://i.imgur.com/q2M3uEU.jpg)
A compact 40% (12x4) ortholinear keyboard kit made and sold by OLKB and Massdrop. [More info on qmk.fm](https://qmk.fm/planck/)
* Keyboard Maintainer: [Jack Humbert](https://github.com/jackhumbert)
* Hardware Supported: Planck PCB rev1, rev2, rev3, rev4, Teensy 2.0
* Hardware Availability: [OLKB.com](https://olkb.com), [Massdrop](https://www.massdrop.com/buy/planck-mechanical-keyboard?mode=guest_open)
Make example for this keyboard (after setting up your build environment):
make planck/rev4:default
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).
```

View File

@ -1,99 +0,0 @@
# Bootloader Driver Installation with Zadig
QMK presents itself to the host as a regular HID keyboard device, and as such requires no special drivers. However, in order to flash your keyboard on Windows, the bootloader device that appears when you reset the board often *does*.
There are two notable exceptions: the Caterina bootloader, usually seen on Pro Micros, and the HalfKay bootloader shipped with PJRC Teensys, appear as a serial port and a generic HID device respectively, and so do not require a driver.
We recommend the use of the [Zadig](https://zadig.akeo.ie/) utility. If you have set up the development environment with MSYS2, the `qmk_install.sh` script will have already installed the drivers for you.
## Installation
Put your keyboard into bootloader mode, either by hitting the `RESET` keycode (which may be on a different layer), or by pressing the reset switch that's usually located on the underside of the board. If your keyboard has neither, try holding Escape or Space+`B` as you plug it in (see the [Bootmagic Lite](feature_bootmagic.md) docs for more details). Some boards use [Command](feature_command.md) instead of Bootmagic; in this case, you can enter bootloader mode by hitting Left Shift+Right Shift+`B` or Left Shift+Right Shift+Escape at any point while the keyboard is plugged in.
Some keyboards may have specific instructions for entering the bootloader. For example, the [Bootmagic Lite](feature_bootmagic.md) key (default: Escape) might be on a different key, e.g. Left Control; or the magic combination for Command (default: Left Shift+Right Shift) might require you to hold something else, e.g. Left Control+Right Control. Refer to the board's README file if you are unsure.
To put a device in bootloader mode with USBaspLoader, tap the `RESET` button while holding down the `BOOT` button.
Alternatively, hold `BOOT` while inserting the USB cable.
Zadig should automatically detect the bootloader device, but you may sometimes need to check **Options → List All Devices** and select the device from the dropdown instead.
!> If Zadig lists one or more devices with the `HidUsb` driver, your keyboard is probably not in bootloader mode. The arrow will be colored orange and you will be asked to confirm modifying a system driver. **Do not** proceed if this is the case!
If the arrow appears green, select the driver, and click **Install Driver**. See the [list of known bootloaders](#list-of-known-bootloaders) for the correct driver to install.
![Zadig with a bootloader driver correctly installed](https://i.imgur.com/b8VgXzx.png)
Finally, unplug and replug the keyboard to make sure the new driver has been loaded. If you are using the QMK Toolbox to flash, exit and restart it too, as it can sometimes fail to recognize the driver change.
## Recovering from Installation to Wrong Device
If you find that you can no longer type with the keyboard, you may have accidentally replaced the driver for the keyboard itself instead of for the bootloader. This can happen when the keyboard is not in the bootloader mode. You can easily confirm this in Zadig - a healthy keyboard has the `HidUsb` driver installed on all of its interfaces:
![A healthy keyboard as seen by Zadig](https://i.imgur.com/Hx0E5kC.png)
Open the Device Manager, select **View → Devices by container**, and look for an entry with your keyboard's name.
![The board with the wrong driver installed, in Device Manager](https://i.imgur.com/o7WLvBl.png)
Right-click each entry and hit **Uninstall device**. Make sure to tick **Delete the driver software for this device** first if it appears.
![The Device Uninstall dialog, with the "delete driver" checkbox ticked](https://i.imgur.com/aEs2RuA.png)
Click **Action → Scan for hardware changes**. At this point, you should be able to type again. Double check in Zadig that the keyboard device(s) are using the `HidUsb` driver. If so, you're all done, and your board should be functional again! Otherwise, repeat this process until Zadig reports the correct driver.
?> A full reboot of your computer may sometimes be necessary at this point, to get Windows to pick up the new driver.
## Uninstallation
Uninstallation of bootloader devices is a little more involved than installation.
Open the Device Manager, select **View → Devices by container**, and look for the bootloader device. Match up the USB VID and PID in Zadig with one from [the table below](#list-of-known-bootloaders).
Find the `Inf name` value in the Details tab of the device properties. This should generally be something like `oemXX.inf`:
![Device properties showing the Inf name value](https://i.imgur.com/Bu4mk9m.png)
Then, open a new Command Prompt window as an Administrator (type in `cmd` into the Start menu and press Ctrl+Shift+Enter). Run `pnputil /enum-drivers` to verify the `Inf name` matches the `Published Name` field of one of the entries:
![pnputil output with matching driver highlighted](https://i.imgur.com/3RrSjzW.png)
Run `pnputil /delete-driver oemXX.inf /uninstall`. This will delete the driver and remove it from any devices using it. Note that this will not uninstall the device itself.
As with the previous section, this process may need to be repeated multiple times, as multiple drivers can be applicable to the same device.
!> **WARNING:** Be *extremely careful* when doing this! You could potentially uninstall the driver for some other critical device. If you are unsure, double check the output of `/enum-drivers`, and omit the `/uninstall` flag when running `/delete-driver`.
## List of Known Bootloaders
This is a list of known bootloader devices and their USB vendor and product IDs, as well as the correct driver to assign for flashing with QMK. Note that the usbser and HidUsb drivers are built in to Windows, and cannot be assigned with Zadig - if your device has an incorrect driver, you must use the Device Manager to uninstall it as described in the previous section.
The device name here is the name that appears in Zadig, and may not be what the Device Manager or QMK Toolbox displays.
|Bootloader |Device Name |VID/PID |Driver |
|--------------|------------------------------|--------------|-------|
|`atmel-dfu` |ATmega16u2 DFU |`03EB:2FEF` |libusb0|
|`atmel-dfu` |ATmega32U2 DFU |`03EB:2FF0` |libusb0|
|`atmel-dfu` |ATm16U4 DFU V1.0.2 |`03EB:2FF3` |libusb0|
|`atmel-dfu` |ATm32U4DFU |`03EB:2FF4` |libusb0|
|`atmel-dfu` |*none* (AT90USB64) |`03EB:2FF9` |libusb0|
|`atmel-dfu` |AT90USB128 DFU |`03EB:2FFB` |libusb0|
|`qmk-dfu` |(keyboard name) Bootloader |As `atmel-dfu`|libusb0|
|`halfkay` |*none* |`16C0:0478` |HidUsb |
|`caterina` |Pro Micro 3.3V |`1B4F:9203` |usbser |
|`caterina` |Pro Micro 5V |`1B4F:9205` |usbser |
|`caterina` |LilyPadUSB |`1B4F:9207` |usbser |
|`caterina` |Pololu A-Star 32U4 Bootloader |`1FFB:0101` |usbser |
|`caterina` |Arduino Leonardo |`2341:0036` |usbser |
|`caterina` |Arduino Micro |`2341:0037` |usbser |
|`caterina` |Adafruit Feather 32u4 |`239A:000C` |usbser |
|`caterina` |Adafruit ItsyBitsy 32u4 3V |`239A:000D` |usbser |
|`caterina` |Adafruit ItsyBitsy 32u4 5V |`239A:000E` |usbser |
|`caterina` |Arduino Leonardo |`2A03:0036` |usbser |
|`caterina` |Arduino Micro |`2A03:0037` |usbser |
|`bootloadhid` |HIDBoot |`16C0:05DF` |HidUsb |
|`usbasploader`|USBasp |`16C0:05DC` |libusbK|
|`apm32-dfu` |APM32 DFU ISP Mode |`314B:0106` |WinUSB |
|`stm32-dfu` |STM32 BOOTLOADER |`0483:DF11` |WinUSB |
|`gd32v-dfu` |GD32V BOOTLOADER |`28E9:0189` |WinUSB |
|`kiibohd` |Kiibohd DFU Bootloader |`1C11:B007` |WinUSB |
|`stm32duino` |Maple 003 |`1EAF:0003` |WinUSB |
|`qmk-hid` |(keyboard name) Bootloader |`03EB:2067` |HidUsb |

View File

@ -1,31 +0,0 @@
# Easy Maker - Build One-Off Projects In Configurator
Have you ever needed an easy way to program a controller, such as a Proton C or Teensy 2.0, for a one-off project you're building? QMK has you covered with the Easy Maker. Now you can create a firmware in minutes using QMK Configurator.
There are different styles of Easy Maker available depending on your needs:
* [Direct Pin](https://config.qmk.fm/#/?filter=ez_maker/direct) - Connect a single switch to a single pin
* Direct Pin + Backlight (Coming Soon) - Like Direct Pin but dedicates a single pin to [Backlight](feature_backlight.md) control
* Direct Pin + Numlock (Coming Soon) - Like Direct Pin but dedicates a single pin to the Numlock LED
* Direct Pin + Capslock (Coming Soon) - Like Direct Pin but dedicates a single pin to the Capslock LED
* Direct Pin + Encoder (Coming Soon) - Like Direct Pin but uses 2 pins to add a single rotary encoder
## Quickstart
The easiest way to get started is with the Direct Pin boards. This will assign a single key to each pin and you can short that pin to ground to activate it. Select your MCU from the Keyboard dropdown here:
* <https://config.qmk.fm/#/?filter=ez_maker/direct>
For more details see the [Direct Pin](#direct-pin) section.
# Direct Pin
As its name implies Direct Pin works by connecting one switch per pin. The other side of the switch should be connected to ground (VSS or GND.) You don't need any other components, your MCU has internal pull-up resistors so that the switch sensing can work.
Here is a schematic showing how we connect a single button to pin A3 on a ProMicro:
![Schematic diagram showing a ProMicro with a wire coming out of A3, connecting to the left side of a switch. Another wire comes out of the right side of the switch to connect to the Ground Plane.](https://i.imgur.com/JcDhZll.png)
Once you have wired your switches you can assign keycodes to each pin and build a firmware by selecting the MCU you are using from the Keyboard dropdown. Use this link to show only Easy Maker Direct Pin:
* <https://config.qmk.fm/#/?filter=ez_maker/direct>

View File

@ -1,75 +0,0 @@
# EEPROM Driver Configuration :id=eeprom-driver-configuration
The EEPROM driver can be swapped out depending on the needs of the keyboard, or whether extra hardware is present.
Driver | Description
-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
`EEPROM_DRIVER = vendor` (default) | Uses the on-chip driver provided by the chip manufacturer. For AVR, this is provided by avr-libc. This is supported on ARM for a subset of chips -- STM32F3xx, STM32F1xx, and STM32F072xB will be emulated by writing to flash. STM32L0xx and STM32L1xx will use the onboard dedicated true EEPROM. Other chips will generally act as "transient" below.
`EEPROM_DRIVER = i2c` | Supports writing to I2C-based 24xx EEPROM chips. See the driver section below.
`EEPROM_DRIVER = spi` | Supports writing to SPI-based 25xx EEPROM chips. See the driver section below.
`EEPROM_DRIVER = transient` | Fake EEPROM driver -- supports reading/writing to RAM, and will be discarded when power is lost.
## Vendor Driver Configuration :id=vendor-eeprom-driver-configuration
#### STM32 L0/L1 Configuration :id=stm32l0l1-eeprom-driver-configuration
!> Resetting EEPROM using an STM32L0/L1 device takes up to 1 second for every 1kB of internal EEPROM used.
`config.h` override | Description | Default Value
------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------
`#define STM32_ONBOARD_EEPROM_SIZE` | The size of the EEPROM to use, in bytes. Erase times can be high, so it's configurable here, if not using the default value. | Minimum required to cover base _eeconfig_ data, or `1024` if VIA is enabled.
## I2C Driver Configuration :id=i2c-eeprom-driver-configuration
Currently QMK supports 24xx-series chips over I2C. As such, requires a working i2c_master driver configuration. You can override the driver configuration via your config.h:
`config.h` override | Description | Default Value
------------------------------------------- | ----------------------------------------------------------------------------------- | ------------------------------------
`#define EXTERNAL_EEPROM_I2C_BASE_ADDRESS` | Base I2C address for the EEPROM -- shifted left by 1 as per i2c_master requirements | 0b10100000
`#define EXTERNAL_EEPROM_I2C_ADDRESS(addr)` | Calculated I2C address for the EEPROM | `(EXTERNAL_EEPROM_I2C_BASE_ADDRESS)`
`#define EXTERNAL_EEPROM_BYTE_COUNT` | Total size of the EEPROM in bytes | 8192
`#define EXTERNAL_EEPROM_PAGE_SIZE` | Page size of the EEPROM in bytes, as specified in the datasheet | 32
`#define EXTERNAL_EEPROM_ADDRESS_SIZE` | The number of bytes to transmit for the memory location within the EEPROM | 2
`#define EXTERNAL_EEPROM_WRITE_TIME` | Write cycle time of the EEPROM, as specified in the datasheet | 5
`#define EXTERNAL_EEPROM_WP_PIN` | If defined the WP pin will be toggled appropriately when writing to the EEPROM. | _none_
Some I2C EEPROM manufacturers explicitly recommend against hardcoding the WP pin to ground. This is in order to protect the eeprom memory content during power-up/power-down/brown-out conditions at low voltage where the eeprom is still operational, but the i2c master output might be unpredictable. If a WP pin is configured, then having an external pull-up on the WP pin is recommended.
Default values and extended descriptions can be found in `drivers/eeprom/eeprom_i2c.h`.
Alternatively, there are pre-defined hardware configurations for available chips/modules:
Module | Equivalent `#define` | Source
-----------------|---------------------------------|------------------------------------------
CAT24C512 EEPROM | `#define EEPROM_I2C_CAT24C512` | <https://www.sparkfun.com/products/14764>
RM24C512C EEPROM | `#define EEPROM_I2C_RM24C512C` | <https://www.sparkfun.com/products/14764>
24LC64 EEPROM | `#define EEPROM_I2C_24LC64` | <https://www.microchip.com/wwwproducts/en/24LC64>
24LC128 EEPROM | `#define EEPROM_I2C_24LC128` | <https://www.microchip.com/wwwproducts/en/24LC128>
24LC256 EEPROM | `#define EEPROM_I2C_24LC256` | <https://www.sparkfun.com/products/525>
MB85RC256V FRAM | `#define EEPROM_I2C_MB85RC256V` | <https://www.adafruit.com/product/1895>
?> If you find that the EEPROM is not cooperating, ensure you've correctly shifted up your EEPROM address by 1. For example, the datasheet might state the address as `0b01010000` -- the correct value of `EXTERNAL_EEPROM_I2C_BASE_ADDRESS` needs to be `0b10100000`.
## SPI Driver Configuration :id=spi-eeprom-driver-configuration
Currently QMK supports 25xx-series chips over SPI. As such, requires a working spi_master driver configuration. You can override the driver configuration via your config.h:
`config.h` override | Description | Default Value
-----------------------------------------------|--------------------------------------------------------------------------------------|--------------
`#define EXTERNAL_EEPROM_SPI_SLAVE_SELECT_PIN` | SPI Slave select pin in order to inform that the EEPROM is currently being addressed | _none_
`#define EXTERNAL_EEPROM_SPI_CLOCK_DIVISOR` | Clock divisor used to divide the peripheral clock to derive the SPI frequency | `64`
`#define EXTERNAL_EEPROM_BYTE_COUNT` | Total size of the EEPROM in bytes | 8192
`#define EXTERNAL_EEPROM_PAGE_SIZE` | Page size of the EEPROM in bytes, as specified in the datasheet | 32
`#define EXTERNAL_EEPROM_ADDRESS_SIZE` | The number of bytes to transmit for the memory location within the EEPROM | 2
!> There's no way to determine if there is an SPI EEPROM actually responding. Generally, this will result in reads of nothing but zero.
## Transient Driver configuration :id=transient-eeprom-driver-configuration
The only configurable item for the transient EEPROM driver is its size:
`config.h` override | Description | Default Value
------------------------------- | ----------------------------------------- | -------------
`#define TRANSIENT_EEPROM_SIZE` | Total size of the EEPROM storage in bytes | 64
Default values and extended descriptions can be found in `drivers/eeprom/eeprom_transient.h`.

View File

@ -1,69 +0,0 @@
# Frequently Asked Build Questions
This page covers questions about building QMK. If you haven't yet done so, you should read the [Build Environment Setup](getting_started_build_tools.md) and [Make Instructions](getting_started_make_guide.md) guides.
## Can't Program on Linux
You will need proper permissions to operate a device. For Linux users, see the instructions regarding `udev` rules, below. If you have issues with `udev`, a work-around is to use the `sudo` command. If you are not familiar with this command, check its manual with `man sudo` or [see this webpage](https://linux.die.net/man/8/sudo).
An example of using `sudo`, when your controller is ATMega32u4:
$ sudo dfu-programmer atmega32u4 erase --force
$ sudo dfu-programmer atmega32u4 flash your.hex
$ sudo dfu-programmer atmega32u4 reset
or just:
$ sudo make <keyboard>:<keymap>:flash
Note that running `make` with `sudo` is generally ***not*** a good idea, and you should use one of the former methods, if possible.
### Linux `udev` Rules :id=linux-udev-rules
On Linux, you'll need proper privileges to communicate with the bootloader device. You can either use `sudo` when flashing firmware (not recommended), or place [this file](https://github.com/qmk/qmk_firmware/tree/master/util/udev/50-qmk.rules) into `/etc/udev/rules.d/`.
Once added, run the following:
```
sudo udevadm control --reload-rules
sudo udevadm trigger
```
**Note:** With older versions of ModemManager (< 1.12), filtering only works when not in strict mode. The following commands can update that setting:
```
printf '[Service]\nExecStart=\nExecStart=/usr/sbin/ModemManager --filter-policy=default' | sudo tee /etc/systemd/system/ModemManager.service.d/policy.conf
sudo systemctl daemon-reload
sudo systemctl restart ModemManager
```
### Serial device is not detected in bootloader mode on Linux
Make sure your kernel has appropriate support for your device. If your device uses USB ACM, such as
Pro Micro (Atmega32u4), make sure to include `CONFIG_USB_ACM=y`. Other devices may require `USB_SERIAL` and any of its sub options.
## Unknown Device for DFU Bootloader
Issues encountered when flashing keyboards on Windows are most often due to having the wrong drivers installed for the bootloader, or none at all.
Re-running the QMK installation script (`./util/qmk_install.sh` from the `qmk_firmware` directory in MSYS2 or WSL) or reinstalling the QMK Toolbox may fix the issue. Alternatively, you can download and run the [`qmk_driver_installer`](https://github.com/qmk/qmk_driver_installer) package manually.
If that doesn't work, then you may need to download and run Zadig. See [Bootloader Driver Installation with Zadig](driver_installation_zadig.md) for more detailed information.
## USB VID and PID
You can use any ID you want with editing `config.h`. Using any presumably unused ID will be no problem in fact except for very low chance of collision with other product.
Most boards in QMK use `0xFEED` as the vendor ID. You should look through other keyboards to make sure you pick a unique Product ID.
Also see this.
https://github.com/tmk/tmk_keyboard/issues/150
You can buy a really unique VID:PID here. I don't think you need this for personal use.
- https://www.obdev.at/products/vusb/license.html
- https://www.mcselec.com/index.php?page=shop.product_details&flypage=shop.flypage&product_id=92&option=com_phpshop&Itemid=1
### I just flashed my keyboard and it does nothing/keypresses don't register - it's also ARM (rev6 planck, clueboard 60, hs60v2, etc...) (Feb 2019)
Due to how EEPROM works on ARM based chips, saved settings may no longer be valid. This affects the default layers, and *may*, under certain circumstances we are still figuring out, make the keyboard unusable. Resetting the EEPROM will correct this.
[Planck rev6 reset EEPROM](https://cdn.discordapp.com/attachments/473506116718952450/539284620861243409/planck_rev6_default.bin) can be used to force an eeprom reset. After flashing this image, flash your normal firmware again which should restore your keyboard to _normal_ working order.
[Preonic rev3 reset EEPROM](https://cdn.discordapp.com/attachments/473506116718952450/537849497313738762/preonic_rev3_default.bin)
If bootmagic is enabled in any form, you should be able to do this too (see [Bootmagic docs](feature_bootmagic.md) and keyboard info for specifics on how to do this).

View File

@ -1,135 +0,0 @@
# Debugging FAQ
This page details various common questions people have about troubleshooting their keyboards.
## Debugging :id=debugging
Your keyboard will output debug information if you have `CONSOLE_ENABLE = yes` in your `rules.mk`. By default the output is very limited, but you can turn on debug mode to increase the amount of debug output. Use the `DEBUG` keycode in your keymap, use the [Command](feature_command.md) feature to enable debug mode, or add the following code to your keymap.
```c
void keyboard_post_init_user(void) {
// Customise these values to desired behaviour
debug_enable=true;
debug_matrix=true;
//debug_keyboard=true;
//debug_mouse=true;
}
```
## Debugging Tools
Various tools are available to debug your keyboard.
### Debugging With QMK Toolbox
For compatible platforms, [QMK Toolbox](https://github.com/qmk/qmk_toolbox) can be used to display debug messages from your keyboard.
### Debugging with QMK CLI
Prefer a terminal based solution? The [QMK CLI console command](cli_commands.md#qmk-console) can be used to display debug messages from your keyboard.
### Debugging With hid_listen
Something stand-alone? [hid_listen](https://www.pjrc.com/teensy/hid_listen.html), provided by PJRC, can also be used to display debug messages. Prebuilt binaries for Windows,Linux,and MacOS are available.
## Sending Your Own Debug Messages :id=debug-api
Sometimes it's useful to print debug messages from within your [custom code](custom_quantum_functions.md). Doing so is pretty simple. Start by including `print.h` at the top of your file:
```c
#include "print.h"
```
After that you can use a few different print functions:
* `print("string")`: Print a simple string.
* `uprintf("%s string", var)`: Print a formatted string
* `dprint("string")` Print a simple string, but only when debug mode is enabled
* `dprintf("%s string", var)`: Print a formatted string, but only when debug mode is enabled
## Debug Examples
Below is a collection of real world debugging examples. For additional information, refer to [Debugging/Troubleshooting QMK](faq_debug.md).
### Which matrix position is this keypress?
When porting, or when attempting to diagnose pcb issues, it can be useful to know if a keypress is scanned correctly. To enable logging for this scenario, add the following code to your keymaps `keymap.c`
```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
// If console is enabled, it will print the matrix position and status of each key pressed
#ifdef CONSOLE_ENABLE
uprintf("KL: kc: 0x%04X, col: %u, row: %u, pressed: %b, time: %u, interrupt: %b, count: %u\n", keycode, record->event.key.col, record->event.key.row, record->event.pressed, record->event.time, record->tap.interrupted, record->tap.count);
#endif
return true;
}
```
Example output
```
Waiting for device:.......
Listening:
KL: kc: 169, col: 0, row: 0, pressed: 1
KL: kc: 169, col: 0, row: 0, pressed: 0
KL: kc: 174, col: 1, row: 0, pressed: 1
KL: kc: 174, col: 1, row: 0, pressed: 0
KL: kc: 172, col: 2, row: 0, pressed: 1
KL: kc: 172, col: 2, row: 0, pressed: 0
```
### How long did it take to scan for a keypress?
When testing performance issues, it can be useful to know the frequency at which the switch matrix is being scanned. To enable logging for this scenario, add the following code to your keymaps `config.h`
```c
#define DEBUG_MATRIX_SCAN_RATE
```
Example output
```
> matrix scan frequency: 315
> matrix scan frequency: 313
> matrix scan frequency: 316
> matrix scan frequency: 316
> matrix scan frequency: 316
> matrix scan frequency: 316
```
## `hid_listen` Can't Recognize Device
When debug console of your device is not ready you will see like this:
```
Waiting for device:.........
```
Once the device is plugged in then *hid_listen* finds it you will get this message:
```
Waiting for new device:.........................
Listening:
```
If you can't get this 'Listening:' message try building with `CONSOLE_ENABLE=yes` in [Makefile]
You may need privileges to access the device an OS like Linux. Try `sudo hid_listen`.
On many Linux distros you can avoid having to run hid_listen as root
by creating a file called `/etc/udev/rules.d/70-hid-listen.rules` with
the following content:
```
SUBSYSTEM=="hidraw", ATTRS{idVendor}=="abcd", ATTRS{idProduct}=="def1", TAG+="uaccess", RUN{builtin}+="uaccess"
```
Replace abcd and def1 with your keyboard's vendor and product id,
letters must be lowercase. The `RUN{builtin}+="uaccess"` part is only
needed for older distros.
## Can't Get Message on Console
Check:
- *hid_listen* finds your device. See above.
- Enable debug by pressing **Magic**+d. See [Magic Commands](https://github.com/tmk/tmk_keyboard#magic-commands).
- Set `debug_enable=true`. See [Debugging](#debugging)
- Try using `print` function instead of debug print. See **common/print.h**.
- Disconnect other devices with console function. See [Issue #97](https://github.com/tmk/tmk_keyboard/issues/97).

View File

@ -1,53 +0,0 @@
# Frequently Asked Questions
## What is QMK?
[QMK](https://github.com/qmk), short for Quantum Mechanical Keyboard, is a group of people building tools for custom keyboards. We started with the [QMK firmware](https://github.com/qmk/qmk_firmware), a heavily modified fork of [TMK](https://github.com/tmk/tmk_keyboard).
## I don't know where to start!
If this is the case, then you should start with our [Newbs Guide](newbs.md). There is a lot of great info there, and that should cover everything you need to get started.
If that's an issue, hop onto the [QMK Configurator](https://config.qmk.fm), as that will handle a majority of what you need there.
## How can I flash the firmware I built?
First, head to the [Compiling/Flashing FAQ Page](faq_build.md). There is a good deal of info there, and you'll find a bunch of solutions to common issues there.
## What if I have an issue that isn't covered here?
Okay, that's fine. Then please check the [open issues in our GitHub](https://github.com/qmk/qmk_firmware/issues) to see if somebody is experiencing the same thing (make sure it's not just similar, but actually the same).
If you can't find anything, then please open a [new issue](https://github.com/qmk/qmk_firmware/issues/new)!
## What if I found a bug?
Then please open an [issue](https://github.com/qmk/qmk_firmware/issues/new), and if you know how to fix it, open up a Pull Request on GitHub with the fix.
## But `git` and `GitHub` are intimidating!
Don't worry, we have some pretty nice [Guidelines](newbs_git_best_practices.md) on how to start using `git` and GitHub to make things easier to develop.
Additionally, you can find additional `git` and GitHub related links [here](newbs_learn_more_resources.md).
## I have a Keyboard that I want to add support for
Awesome! Open up a Pull Request for it. We'll review the code, and merge it!
### What if I want to brand it with `QMK`?
That's amazing! We would love to assist you with that!
In fact, we have a [whole page](https://qmk.fm/powered/) dedicated to adding QMK Branding to your page and keyboard. This covers pretty much everything you need (knowledge and images) to officially support QMK.
If you have any questions about this, open an issue or head to [Discord](https://discord.gg/Uq7gcHh).
## What Differences Are There Between QMK and TMK?
TMK was originally designed and implemented by [Jun Wako](https://github.com/tmk). QMK started as [Jack Humbert](https://github.com/jackhumbert)'s fork of TMK for the Planck. After a while Jack's fork had diverged quite a bit from TMK, and in 2015 Jack decided to rename his fork to QMK.
From a technical standpoint QMK builds upon TMK by adding several new features. Most notably QMK has expanded the number of available keycodes and uses these to implement advanced features like `S()`, `LCTL()`, and `MO()`. You can see a complete list of these keycodes in [Keycodes](keycodes.md).
From a project and community management standpoint TMK maintains all the officially supported keyboards by himself, with a bit of community support. Separate community maintained forks exist or can be created for other keyboards. Only a few keymaps are provided by default, so users typically don't share keymaps with each other. QMK encourages sharing of both keyboards and keymaps through a centrally managed repository, accepting all pull requests that follow the quality standards. These are mostly community maintained, but the QMK team also helps when necessary.
Both approaches have their merits and their drawbacks, and code flows freely between TMK and QMK when it makes sense.

View File

@ -1,156 +0,0 @@
# Keymap FAQ
This page covers questions people often have about keymaps. If you haven't you should read [Keymap Overview](keymap.md) first.
## What Keycodes Can I Use?
See [Keycodes](keycodes.md) for an index of keycodes available to you. These link to more extensive documentation when available.
Keycodes are actually defined in [quantum/keycode.h](https://github.com/qmk/qmk_firmware/blob/master/quantum/keycode.h).
## What Are the Default Keycodes?
There are 3 standard keyboard layouts in use around the world- ANSI, ISO, and JIS. North America primarily uses ANSI, Europe and Africa primarily use ISO, and Japan uses JIS. Regions not mentioned typically use either ANSI or ISO. The keycodes corresponding to these layouts are shown here:
<!-- Source for this image: https://www.keyboard-layout-editor.com/#/gists/bf431647d1001cff5eff20ae55621e9a -->
![Keyboard Layout Image](https://i.imgur.com/5wsh5wM.png)
## How Can I Make Custom Names For Complex Keycodes?
Sometimes, for readability's sake, it's useful to define custom names for some keycodes. People often define custom names using `#define`. For example:
```c
#define FN_CAPS LT(_FL, KC_CAPS)
#define ALT_TAB LALT(KC_TAB)
```
This will allow you to use `FN_CAPS` and `ALT_TAB` in your keymap, keeping it more readable.
## Some Of My Keys Are Swapped Or Not Working
QMK has two features, Bootmagic and Command, which allow you to change the behavior of your keyboard on the fly. This includes, but is not limited to, swapping Ctrl/Caps, disabling Gui, swapping Alt/Gui, swapping Backspace/Backslash, disabling all keys, and other behavioral modifications.
As a quick fix try holding down `Space`+`Backspace` while you plug in your keyboard. This will reset the stored settings on your keyboard, returning those keys to normal operation. If that doesn't work look here:
* [Bootmagic Lite](feature_bootmagic.md)
* [Command](feature_command.md)
## The Menu Key Isn't Working
The key found on most modern keyboards that is located between `KC_RGUI` and `KC_RCTL` is actually called `KC_APP`. This is because when that key was invented there was already a key named `MENU` in the relevant standards, so MS chose to call that the `APP` key.
## `KC_SYSTEM_REQUEST` Isn't Working
Use keycode for Print Screen (`KC_PRINT_SCREEN`/`KC_PSCR`) instead of `KC_SYSTEM_REQUEST`. Key combination of 'Alt + Print Screen' is recognized as 'System request'.
See [issue #168](https://github.com/tmk/tmk_keyboard/issues/168) and
* https://en.wikipedia.org/wiki/Magic_SysRq_key
* https://en.wikipedia.org/wiki/System_request
## Power Keys Aren't Working
Somewhat confusingly, there are two "Power" keycodes in QMK: `KC_KB_POWER` in the Keyboard/Keypad HID usage page, and `KC_SYSTEM_POWER` (or `KC_PWR`) in the Consumer page.
The former is only recognized on macOS, while the latter, `KC_SLEP` and `KC_WAKE` are supported by all three major operating systems, so it is recommended to use those instead. Under Windows, these keys take effect immediately, however on macOS they must be held down until a dialog appears.
## One Shot Modifier
Solves my personal 'the' problem. I often got 'the' or 'THe' wrongly instead of 'The'. One Shot Shift mitigates this for me.
https://github.com/tmk/tmk_keyboard/issues/67
## Modifier/Layer Stuck
Modifier keys or layers can be stuck unless layer switching is configured properly.
For Modifier keys and layer actions you have to place `KC_TRNS` on same position of destination layer to unregister the modifier key or return to previous layer on release event.
* https://github.com/tmk/tmk_core/blob/master/doc/keymap.md#31-momentary-switching
* https://geekhack.org/index.php?topic=57008.msg1492604#msg1492604
* https://github.com/tmk/tmk_keyboard/issues/248
## Mechanical Lock Switch Support
This feature is for *mechanical lock switch* like [this Alps one](https://deskthority.net/wiki/Alps_SKCL_Lock). You can enable it by adding this to your `config.h`:
```
#define LOCKING_SUPPORT_ENABLE
#define LOCKING_RESYNC_ENABLE
```
After enabling this feature use keycodes `KC_LCAP`, `KC_LNUM` and `KC_LSCR` in your keymap instead.
Old vintage mechanical keyboards occasionally have lock switches but modern ones don't have. ***You don't need this feature in most case and just use keycodes `KC_CAPS`, `KC_NUM` and `KC_SCRL`.***
## Input Special Characters Other Than ASCII like Cédille 'Ç'
See the [Unicode](feature_unicode.md) feature.
## `Fn` Key on macOS
Unlike most Fn keys, the one on Apple keyboards actually has its own keycode... sort of. It takes the place of the sixth keycode in a basic 6KRO HID report -- so an Apple keyboard is in fact only 5KRO.
It is technically possible to get QMK to send this key. However, doing so requires modification of the report format to add the state of the Fn key.
Even worse, it is not recognized unless the keyboard's VID and PID match that of a real Apple keyboard. The legal issues that official QMK support for this feature may create mean it is unlikely to happen.
See [this issue](https://github.com/qmk/qmk_firmware/issues/2179) for detailed information.
## Keys Supported in Mac OSX?
You can know which keycodes are supported in OSX from this source code.
`usb_2_adb_keymap` array maps Keyboard/Keypad Page usages to ADB scancodes(OSX internal keycodes).
https://opensource.apple.com/source/IOHIDFamily/IOHIDFamily-606.1.7/IOHIDFamily/Cosmo_USB2ADB.c
And `IOHIDConsumer::dispatchConsumerEvent` handles Consumer page usages.
https://opensource.apple.com/source/IOHIDFamily/IOHIDFamily-606.1.7/IOHIDFamily/IOHIDConsumer.cpp
## JIS Keys in Mac OSX
Japanese JIS keyboard specific keys like `無変換(Muhenkan)`, `変換(Henkan)`, `ひらがな(hiragana)` are not recognized on OSX. You can use **Seil** to enable those keys, try following options.
* Enable NFER Key on PC keyboard
* Enable XFER Key on PC keyboard
* Enable KATAKANA Key on PC keyboard
https://pqrs.org/osx/karabiner/seil.html
## RN-42 Bluetooth Doesn't Work with Karabiner
Karabiner - Keymapping tool on Mac OSX - ignores inputs from RN-42 module by default. You have to enable this option to make Karabiner working with your keyboard.
https://github.com/tekezo/Karabiner/issues/403#issuecomment-102559237
See these for the detail of this problem.
https://github.com/tmk/tmk_keyboard/issues/213
https://github.com/tekezo/Karabiner/issues/403
## Esc and <code>&#96;</code> on a Single Key
See the [Grave Escape](feature_grave_esc.md) feature.
## Eject on Mac OSX
`KC_EJCT` keycode works on OSX. https://github.com/tmk/tmk_keyboard/issues/250
It seems Windows 10 ignores the code and Linux/Xorg recognizes but has no mapping by default.
Not sure what keycode Eject is on genuine Apple keyboard actually. HHKB uses `F20` for Eject key(`Fn+f`) on Mac mode but this is not same as Apple Eject keycode probably.
## What's `weak_mods` and `real_mods` in `action_util.c`
___TO BE IMPROVED___
real_mods is intended to retains state of real/physical modifier key state, while
weak_mods retains state of virtual or temporary modifiers which should not affect state real modifier key.
Let's say you hold down physical left shift key and type ACTION_MODS_KEY(LSHIFT, KC_A),
with weak_mods,
* (1) hold down left shift: real_mods |= MOD_BIT(LSHIFT)
* (2) press ACTION_MODS_KEY(LSHIFT, KC_A): weak_mods |= MOD_BIT(LSHIFT)
* (3) release ACTION_MODS_KEY(LSHIFT, KC_A): weak_mods &= ~MOD_BIT(LSHIFT)
real_mods still keeps modifier state.
without weak mods,
* (1) hold down left shift: real_mods |= MOD_BIT(LSHIFT)
* (2) press ACTION_MODS_KEY(LSHIFT, KC_A): real_mods |= MOD_BIT(LSHIFT)
* (3) release ACTION_MODS_KEY(LSHIFT, KC_A): real_mods &= ~MOD_BIT(LSHIFT)
here real_mods lost state for 'physical left shift'.
weak_mods is ORed with real_mods when keyboard report is sent.
https://github.com/tmk/tmk_core/blob/master/common/action_util.c#L57

View File

@ -1,113 +0,0 @@
# Miscellaneous FAQ
## How do I test my keyboard? :id=testing
Testing your keyboard is usually pretty straightforward. Press every single key and make sure it sends the keys you expect. You can use [QMK Configurator](https://config.qmk.fm/#/test/)'s test mode to check your keyboard, even if it doesn't run QMK.
## Safety Considerations
You probably don't want to "brick" your keyboard, making it impossible
to rewrite firmware onto it. Here are some of the parameters to show
what things are (and likely aren't) too risky.
- If your keyboard map does not include RESET, then, to get into DFU
mode, you will need to press the reset button on the PCB, which
requires unscrewing the bottom.
- Messing with tmk_core / common files might make the keyboard
inoperable
- Too large a .hex file is trouble; `make dfu` will erase the block,
test the size (oops, wrong order!), which errors out, failing to
flash the keyboard, leaving it in DFU mode.
- To this end, note that the maximum .hex file size on e.g. Planck
is 7000h (28672 decimal)
```
Linking: .build/planck_rev4_cbbrowne.elf [OK]
Creating load file for Flash: .build/planck_rev4_cbbrowne.hex [OK]
Size after:
text data bss dec hex filename
0 22396 0 22396 577c planck_rev4_cbbrowne.hex
```
- The above file is of size 22396/577ch, which is less than
28672/7000h
- As long as you have a suitable alternative .hex file around, you
can retry, loading that one
- Some of the options you might specify in your keyboard's Makefile
consume extra memory; watch out for BOOTMAGIC_ENABLE,
MOUSEKEY_ENABLE, EXTRAKEY_ENABLE, CONSOLE_ENABLE
- DFU tools do /not/ allow you to write into the bootloader (unless
you throw in an extra fruit salad of options), so there is little risk
there.
- EEPROM has around a 100000 (100k) write cycle. You shouldn't rewrite
the firmware repeatedly and continually; that'll burn the EEPROM
eventually.
## NKRO Doesn't work
First you have to compile firmware with the build option `NKRO_ENABLE` in **Makefile**.
Try `Magic` **N** command(`LShift+RShift+N` by default) when **NKRO** still doesn't work. You can use this command to toggle between **NKRO** and **6KRO** mode temporarily. In some situations **NKRO** doesn't work and you will need to switch to **6KRO** mode, in particular when you are in BIOS.
## TrackPoint Needs Reset Circuit (PS/2 Mouse Support)
Without reset circuit you will have inconsistent result due to improper initialization of the hardware. See circuit schematic of TPM754:
- https://geekhack.org/index.php?topic=50176.msg1127447#msg1127447
- https://www.mikrocontroller.net/attachment/52583/tpm754.pdf
## Can't Read Column of Matrix Beyond 16
Use `1UL<<16` instead of `1<<16` in `read_cols()` in [matrix.h] when your columns goes beyond 16.
In C `1` means one of [int] type which is [16 bit] in case of AVR, so you can't shift left more than 15. Thus, calculating `1<<16` will unexpectedly equal zero. To work around this, you have to use [unsigned long] type with `1UL`.
https://deskthority.net/workshop-f7/rebuilding-and-redesigning-a-classic-thinkpad-keyboard-t6181-60.html#p146279
## Special Extra Key Doesn't Work (System, Audio Control Keys)
You need to define `EXTRAKEY_ENABLE` in `rules.mk` to use them in QMK.
```
EXTRAKEY_ENABLE = yes # Audio control and System control
```
## Wake from Sleep Doesn't Work
In Windows check `Allow this device to wake the computer` setting in **Power Management** property tab of **Device Manager**. Also check your BIOS settings. Pressing any key during sleep should wake host.
## Using Arduino?
**Note that Arduino pin naming is different from actual chip.** For example, Arduino pin `D0` is not `PD0`. Check circuit with its schematics yourself.
- https://arduino.cc/en/uploads/Main/arduino-leonardo-schematic_3b.pdf
- https://arduino.cc/en/uploads/Main/arduino-micro-schematic.pdf
Arduino Leonardo and micro have **ATMega32U4** and can be used for TMK, though Arduino bootloader may be a problem.
## Enabling JTAG
By default, the JTAG debugging interface is disabled as soon as the keyboard starts up. JTAG-capable MCUs come from the factory with the `JTAGEN` fuse set, and it takes over certain pins of the MCU that the board may be using for the switch matrix, LEDs, etc.
If you would like to keep JTAG enabled, just add the following to your `config.h`:
```c
#define NO_JTAG_DISABLE
```
## USB 3 Compatibility
Some problems can be fixed by switching from a USB 3.x port to a USB 2.0 port.
## Mac Compatibility
### OS X 10.11 and Hub
See here: https://geekhack.org/index.php?topic=14290.msg1884034#msg1884034
## Problem in BIOS (UEFI) Setup/Resume (Sleep & Wake)/Power Cycles
Some people reported their keyboard stops working in BIOS and/or after resume(power cycles).
As of now the root cause is not clear, but some build options seem to be related. In Makefile, try to disable options like `CONSOLE_ENABLE`, `NKRO_ENABLE`, `SLEEP_LED_ENABLE` and/or others.
More info:
- https://github.com/tmk/tmk_keyboard/issues/266
- https://geekhack.org/index.php?topic=41989.msg1967778#msg1967778

View File

@ -1,182 +0,0 @@
# Modifier Keys :id=modifier-keys
These allow you to combine a modifier with a keycode. When pressed, the keydown event for the modifier, then `kc` will be sent. On release, the keyup event for `kc`, then the modifier will be sent.
|Key |Aliases |Description |
|----------|----------------------------------|------------------------------------------------------|
|`LCTL(kc)`|`C(kc)` |Hold Left Control and press `kc` |
|`LSFT(kc)`|`S(kc)` |Hold Left Shift and press `kc` |
|`LALT(kc)`|`A(kc)`, `LOPT(kc)` |Hold Left Alt and press `kc` |
|`LGUI(kc)`|`G(kc)`, `LCMD(kc)`, `LWIN(kc)` |Hold Left GUI and press `kc` |
|`RCTL(kc)`| |Hold Right Control and press `kc` |
|`RSFT(kc)`| |Hold Right Shift and press `kc` |
|`RALT(kc)`|`ROPT(kc)`, `ALGR(kc)` |Hold Right Alt and press `kc` |
|`RGUI(kc)`|`RCMD(kc)`, `LWIN(kc)` |Hold Right GUI and press `kc` |
|`LSG(kc)` |`SGUI(kc)`, `SCMD(kc)`, `SWIN(kc)`|Hold Left Shift and GUI and press `kc` |
|`LAG(kc)` | |Hold Left Alt and Left GUI and press `kc` |
|`RSG(kc)` | |Hold Right Shift and Right GUI and press `kc` |
|`RAG(kc)` | |Hold Right Alt and Right GUI and press `kc` |
|`LCA(kc)` | |Hold Left Control and Alt and press `kc` |
|`LSA(kc)` | |Hold Left Shift and Left Alt and press `kc` |
|`RSA(kc)` |`SAGR(kc)` |Hold Right Shift and Right Alt (AltGr) and press `kc` |
|`RCS(kc)` | |Hold Right Control and Right Shift and press `kc` |
|`LCAG(kc)`| |Hold Left Control, Alt and GUI and press `kc` |
|`MEH(kc)` | |Hold Left Control, Shift and Alt and press `kc` |
|`HYPR(kc)`| |Hold Left Control, Shift, Alt and GUI and press `kc` |
You can also chain them, for example `LCTL(LALT(KC_DEL))` or `C(A(KC_DEL))` makes a key that sends Control+Alt+Delete with a single keypress.
# Checking Modifier State :id=checking-modifier-state
The current modifier state can mainly be accessed with two functions: `get_mods()` for normal modifiers and modtaps and `get_oneshot_mods()` for one-shot modifiers (unless they're held, in which case they act like normal modifier keys).
The presence of one or more specific modifiers in the current modifier state can be detected by ANDing the modifier state with a mod mask corresponding to the set of modifiers you want to match for. The reason why bitwise operators are used is that the modifier state is stored as a single byte in the format (GASC)<sub>R</sub>(GASC)<sub>L</sub>.
Thus, to give an example, `01000010` would be the internal representation of LShift+RAlt.
For more information on bitwise operators in C, click [here](https://en.wikipedia.org/wiki/Bitwise_operations_in_C) to open the Wikipedia page on the topic.
In practice, this means that you can check whether a given modifier is active with `get_mods() & MOD_BIT(KC_<modifier>)` (see the [list of modifier keycodes](keycodes_basic.md#modifiers)) or with `get_mods() & MOD_MASK_<modifier>` if the difference between left and right hand modifiers is not important and you want to match both. Same thing can be done for one-shot modifiers if you replace `get_mods()` with `get_oneshot_mods()`.
To check that *only* a specific set of mods is active at a time, AND the modifier state and your desired mod mask as explained above and compare the result to the mod mask itself: `get_mods() & <mod mask> == <mod mask>`.
For example, let's say you want to trigger a piece of custom code if one-shot left control and one-shot left shift are on but every other one-shot mods are off. To do so, you can compose the desired mod mask by combining the mod bits for left control and shift with `(MOD_BIT(KC_LCTL) | MOD_BIT(KC_LSFT))` and then plug it in: `get_oneshot_mods & (MOD_BIT(KC_LCTL) | MOD_BIT(KC_LSFT)) == (MOD_BIT(KC_LCTL) | MOD_BIT(KC_LSFT))`. Using `MOD_MASK_CS` instead for the mod bitmask would have forced you to press four modifier keys (both versions of control and shift) to fulfill the condition.
The full list of mod masks is as follows:
| Mod Mask Name | Matching Modifiers |
|--------------------|------------------------------------------------|
| `MOD_MASK_CTRL` | LCTRL , RCTRL |
| `MOD_MASK_SHIFT` | LSHIFT , RSHIFT |
| `MOD_MASK_ALT` | LALT , RALT |
| `MOD_MASK_GUI` | LGUI , RGUI |
| `MOD_MASK_CS` | CTRL , SHIFT |
| `MOD_MASK_CA` | (L/R)CTRL , (L/R)ALT |
| `MOD_MASK_CG` | (L/R)CTRL , (L/R)GUI |
| `MOD_MASK_SA` | (L/R)SHIFT , (L/R)ALT |
| `MOD_MASK_SG` | (L/R)SHIFT , (L/R)GUI |
| `MOD_MASK_AG` | (L/R)ALT , (L/R)GUI |
| `MOD_MASK_CSA` | (L/R)CTRL , (L/R)SHIFT , (L/R)ALT |
| `MOD_MASK_CSG` | (L/R)CTRL , (L/R)SHIFT , (L/R)GUI |
| `MOD_MASK_CAG` | (L/R)CTRL , (L/R)ALT , (L/R)GUI |
| `MOD_MASK_SAG` | (L/R)SHIFT , (L/R)ALT , (L/R)GUI |
| `MOD_MASK_CSAG` | (L/R)CTRL , (L/R)SHIFT , (L/R)ALT , (L/R)GUI |
Aside from accessing the currently active modifiers using `get_mods()`, there exists some other functions you can use to modify the modifier state, where the `mods` argument refers to the modifiers bitmask.
* `add_mods(mods)`: Enable `mods` without affecting any other modifiers
* `register_mods(mods)`: Like `add_mods` but send a keyboard report immediately.
* `del_mods(mods)`: Disable `mods` without affecting any other modifiers
* `unregister_mods(mods)`: Like `del_mods` but send a keyboard report immediately.
* `set_mods(mods)`: Overwrite current modifier state with `mods`
* `clear_mods()`: Reset the modifier state by disabling all modifiers
Similarly, in addition to `get_oneshot_mods()`, there also exists these functions for one-shot mods:
* `add_oneshot_mods(mods)`: Enable `mods` without affecting any other one-shot modifiers
* `del_oneshot_mods(mods)`: Disable `mods` without affecting any other one-shot modifiers
* `set_oneshot_mods(mods)`: Overwrite current one-shot modifier state with `mods`
* `clear_oneshot_mods()`: Reset the one-shot modifier state by disabling all one-shot modifiers
## Examples :id=examples
The following examples use [advanced macro functions](feature_macros.md#advanced-macro-functions) which you can read more about in the [documentation page on macros](feature_macros.md).
### Alt + Escape for Alt + Tab :id=alt-escape-for-alt-tab
Simple example where chording Left Alt with `KC_ESC` makes it behave like `KC_TAB` for alt-tabbing between applications. This example strictly checks if only Left Alt is active, meaning you can't do Alt+Shift+Esc to switch between applications in reverse order. Also keep in mind that this removes the ability to trigger the actual Alt+Escape keyboard shortcut, though it keeps the ability to do AltGr+Escape.
```c
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case KC_ESC:
// Detect the activation of only Left Alt
if ((get_mods() & MOD_BIT(KC_LALT)) == MOD_BIT(KC_LALT)) {
if (record->event.pressed) {
// No need to register KC_LALT because it's already active.
// The Alt modifier will apply on this KC_TAB.
register_code(KC_TAB);
} else {
unregister_code(KC_TAB);
}
// Do not let QMK process the keycode further
return false;
}
// Else, let QMK process the KC_ESC keycode as usual
return true;
}
return true;
};
```
### Shift + Backspace for Delete :id=shift-backspace-for-delete
Advanced example where the original behaviour of shift is cancelled when chorded with `KC_BSPC` and is instead fully replaced by `KC_DEL`. Two main variables are created to make this work well: `mod_state` and `delkey_registered`. The first one stores the modifier state and is used to restore it after registering `KC_DEL`. The second variable is a boolean variable (true or false) which keeps track of the status of `KC_DEL` to manage the release of the whole Backspace/Delete key correctly.
As opposed to the previous example, this doesn't use strict modifier checking. Pressing `KC_BSPC` while one or two shifts are active is enough to trigger this custom code, regardless of the state of other modifiers. That approach offers some perks: Ctrl+Shift+Backspace lets us delete the next word (Ctrl+Delete) and Ctrl+Alt+Shift+Backspace lets us execute the Ctrl+Alt+Del keyboard shortcut.
```c
// Initialize variable holding the binary
// representation of active modifiers.
uint8_t mod_state;
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
// Store the current modifier state in the variable for later reference
mod_state = get_mods();
switch (keycode) {
case KC_BSPC:
{
// Initialize a boolean variable that keeps track
// of the delete key status: registered or not?
static bool delkey_registered;
if (record->event.pressed) {
// Detect the activation of either shift keys
if (mod_state & MOD_MASK_SHIFT) {
// First temporarily canceling both shifts so that
// shift isn't applied to the KC_DEL keycode
del_mods(MOD_MASK_SHIFT);
register_code(KC_DEL);
// Update the boolean variable to reflect the status of KC_DEL
delkey_registered = true;
// Reapplying modifier state so that the held shift key(s)
// still work even after having tapped the Backspace/Delete key.
set_mods(mod_state);
return false;
}
} else { // on release of KC_BSPC
// In case KC_DEL is still being sent even after the release of KC_BSPC
if (delkey_registered) {
unregister_code(KC_DEL);
delkey_registered = false;
return false;
}
}
// Let QMK process the KC_BSPC keycode as usual outside of shift
return true;
}
}
return true;
};
```
# Legacy Content :id=legacy-content
This page used to encompass a large set of features. We have moved many sections that used to be part of this page to their own pages. Everything below this point is simply a redirect so that people following old links on the web find what they're looking for.
## Layers :id=switching-and-toggling-layers
* [Layers](feature_layers.md)
## Mod-Tap :id=mod-tap
* [Mod-Tap](mod_tap.md)
## One Shot Keys :id=one-shot-keys
* [One Shot Keys](one_shot_keys.md)
## Tap-Hold Configuration Options :id=tap-hold-configuration-options
* [Tap-Hold Configuration Options](tap_hold.md)

View File

@ -1,348 +0,0 @@
# Audio
Your keyboard can make sounds! If you've got a spare pin you can hook up a simple speaker and make it beep. You can use those beeps to indicate layer transitions, modifiers, special keys, or just to play some funky 8bit tunes.
To activate this feature, add `AUDIO_ENABLE = yes` to your `rules.mk`.
## AVR based boards
On Atmega32U4 based boards, up to two simultaneous tones can be rendered.
With one speaker connected to a PWM capable pin on PORTC driven by timer 3 and the other on one of the PWM pins on PORTB driven by timer 1.
The following pins can be configured as audio outputs in `config.h` - for one speaker set either one out of:
* `#define AUDIO_PIN C4`
* `#define AUDIO_PIN C5`
* `#define AUDIO_PIN C6`
* `#define AUDIO_PIN B5`
* `#define AUDIO_PIN B6`
* `#define AUDIO_PIN B7`
and *optionally*, for a second speaker, one of:
* `#define AUDIO_PIN_ALT B5`
* `#define AUDIO_PIN_ALT B6`
* `#define AUDIO_PIN_ALT B7`
### Wiring
per speaker is - for example with a piezo buzzer - the black lead to Ground, and the red lead connected to the selected AUDIO_PIN for the primary; and similarly with AUDIO_PIN_ALT for the secondary.
## ARM based boards
for more technical details, see the notes on [Audio driver](audio_driver.md).
<!-- because I'm not sure where to fit this in: https://waveeditonline.com/ -->
### DAC (basic)
Most STM32 MCUs have DAC peripherals, with a notable exception of the STM32F1xx series. Generally, the DAC peripheral drives pins A4 or A5. To enable DAC-based audio output on STM32 devices, add `AUDIO_DRIVER = dac_basic` to `rules.mk` and set in `config.h` either:
`#define AUDIO_PIN A4` or `#define AUDIO_PIN A5`
the other DAC channel can optionally be used with a secondary speaker, just set:
`#define AUDIO_PIN_ALT A4` or `#define AUDIO_PIN_ALT A5`
Do note though that the dac_basic driver is only capable of reproducing one tone per speaker/channel at a time, for more tones simultaneously, try the dac_additive driver.
#### Wiring:
for two piezos, for example configured as `AUDIO_PIN A4` and `AUDIO_PIN_ALT A5` would be: red lead to A4 and black to Ground, and similarly with the second one: A5 = red, and Ground = black
another alternative is to drive *one* piezo with both DAC pins - for an extra "push".
wiring red to A4 and black to A5 (or the other way round) and add `#define AUDIO_PIN_ALT_AS_NEGATIVE` to `config.h`
##### Proton-C Example:
The Proton-C comes (optionally) with one 'builtin' piezo, which is wired to A4+A5.
For this board `config.h` would include these defines:
```c
#define AUDIO_PIN A5
#define AUDIO_PIN_ALT A4
#define AUDIO_PIN_ALT_AS_NEGATIVE
```
### DAC (additive)
Another option, besides dac_basic (which produces sound through a square-wave), is to use the DAC to do additive wave synthesis.
With a number of predefined wave-forms or by providing your own implementation to generate samples on the fly.
To use this feature set `AUDIO_DRIVER = dac_additive` in your `rules.mk`, and select in `config.h` EITHER `#define AUDIO_PIN A4` or `#define AUDIO_PIN A5`.
The used waveform *defaults* to sine, but others can be selected by adding one of the following defines to `config.h`:
* `#define AUDIO_DAC_SAMPLE_WAVEFORM_SINE`
* `#define AUDIO_DAC_SAMPLE_WAVEFORM_TRIANGLE`
* `#define AUDIO_DAC_SAMPLE_WAVEFORM_TRAPEZOID`
* `#define AUDIO_DAC_SAMPLE_WAVEFORM_SQUARE`
Should you rather choose to generate and use your own sample-table with the DAC unit, implement `uint16_t dac_value_generate(void)` with your keyboard - for an example implementation see keyboards/planck/keymaps/synth_sample or keyboards/planck/keymaps/synth_wavetable
### PWM (software)
if the DAC pins are unavailable (or the MCU has no usable DAC at all, like STM32F1xx); PWM can be an alternative.
Note that there is currently only one speaker/pin supported.
set in `rules.mk`:
`AUDIO_DRIVER = pwm_software` and in `config.h`:
`#define AUDIO_PIN C13` (can be any pin) to have the selected pin output a pwm signal, generated from a timer callback which toggles the pin in software.
#### Wiring
the usual piezo wiring: red goes to the selected AUDIO_PIN, black goes to ground.
OR if you can chose to drive one piezo with two pins, for example `#define AUDIO_PIN B1`, `#define AUDIO_PIN_ALT B2` in `config.h`, with `#define AUDIO_PIN_ALT_AS_NEGATIVE` - then the red lead could go to B1, the black to B2.
### PWM (hardware)
STM32F1xx have to fall back to using PWM, but can do so in hardware; but again on currently only one speaker/pin.
`AUDIO_DRIVER = pwm_hardware` in `rules.mk`, and in `config.h`:
`#define AUDIO_PIN A8`
`#define AUDIO_PWM_DRIVER PWMD1`
`#define AUDIO_PWM_CHANNEL 1`
(as well as `#define AUDIO_PWM_PAL_MODE 42` if you are on STM32F2 or larger)
which will use Timer 1 to directly drive pin PA8 through the PWM hardware (TIM1_CH1 = PA8).
Should you want to use the pwm-hardware on another pin and timer - be ready to dig into the STM32 data-sheet to pick the right TIMx_CHy and pin-alternate function.
## Tone Multiplexing
Since most drivers can only render one tone per speaker at a time (with the one exception: arm dac-additive) there also exists a "workaround-feature" that does time-slicing/multiplexing - which does what the name implies: cycle through a set of active tones (e.g. when playing chords in Music Mode) at a given rate, and put one tone at a time out through the one/few speakers that are available.
To enable this feature, and configure a starting-rate, add the following defines to `config.h`:
```c
#define AUDIO_ENABLE_TONE_MULTIPLEXING
#define AUDIO_TONE_MULTIPLEXING_RATE_DEFAULT 10
```
The audio core offers interface functions to get/set/change the tone multiplexing rate from within `keymap.c`.
## Songs
There's a couple of different sounds that will automatically be enabled without any other configuration:
```
STARTUP_SONG // plays when the keyboard starts up (audio.c)
GOODBYE_SONG // plays when you press the RESET key (quantum.c)
AG_NORM_SONG // plays when you press AG_NORM (quantum.c)
AG_SWAP_SONG // plays when you press AG_SWAP (quantum.c)
CG_NORM_SONG // plays when you press CG_NORM (quantum.c)
CG_SWAP_SONG // plays when you press CG_SWAP (quantum.c)
MUSIC_ON_SONG // plays when music mode is activated (process_music.c)
MUSIC_OFF_SONG // plays when music mode is deactivated (process_music.c)
CHROMATIC_SONG // plays when the chromatic music mode is selected (process_music.c)
GUITAR_SONG // plays when the guitar music mode is selected (process_music.c)
VIOLIN_SONG // plays when the violin music mode is selected (process_music.c)
MAJOR_SONG // plays when the major music mode is selected (process_music.c)
```
You can override the default songs by doing something like this in your `config.h`:
```c
#ifdef AUDIO_ENABLE
# define STARTUP_SONG SONG(STARTUP_SOUND)
#endif
```
A full list of sounds can be found in [quantum/audio/song_list.h](https://github.com/qmk/qmk_firmware/blob/master/quantum/audio/song_list.h) - feel free to add your own to this list! All available notes can be seen in [quantum/audio/musical_notes.h](https://github.com/qmk/qmk_firmware/blob/master/quantum/audio/musical_notes.h).
Additionally, if you with to maintain your own list of songs (such as ones that may be copyrighted) and not have them added to the repo, you can create a `user_song_list.h` file and place it in your keymap (or userspace) folder. This file will be automatically included, it just needs to exist.
To play a custom sound at a particular time, you can define a song like this (near the top of the file):
```c
float my_song[][2] = SONG(QWERTY_SOUND);
```
And then play your song like this:
```c
PLAY_SONG(my_song);
```
Alternatively, you can play it in a loop like this:
```c
PLAY_LOOP(my_song);
```
It's advised that you wrap all audio features in `#ifdef AUDIO_ENABLE` / `#endif` to avoid causing problems when audio isn't built into the keyboard.
The available keycodes for audio are:
* `AU_ON` - Turn Audio Feature on
* `AU_OFF` - Turn Audio Feature off
* `AU_TOG` - Toggle Audio Feature state
!> These keycodes turn all of the audio functionality on and off. Turning it off means that audio feedback, audio clicky, music mode, etc. are disabled, completely.
## Audio Config
| Settings | Default | Description |
|---------------------------------|----------------------|-------------------------------------------------------------------------------|
|`AUDIO_PIN` | *Not defined* |Configures the pin that the speaker is connected to. |
|`AUDIO_PIN_ALT` | *Not defined* |Configures the pin for a second speaker or second pin connected to one speaker.|
|`AUDIO_PIN_ALT_AS_NEGATIVE` | *Not defined* |Enables support for one speaker connected to two pins. |
|`AUDIO_INIT_DELAY` | *Not defined* |Enables delay during startup song to accomidate for USB startup issues. |
|`AUDIO_ENABLE_TONE_MULTIPLEXING` | *Not defined* |Enables time splicing/multiplexing to create multiple tones simutaneously. |
|`STARTUP_SONG` | `STARTUP_SOUND` |Plays when the keyboard starts up (audio.c) |
|`GOODBYE_SONG` | `GOODBYE_SOUND` |Plays when you press the RESET key (quantum.c) |
|`AG_NORM_SONG` | `AG_NORM_SOUND` |Plays when you press AG_NORM (process_magic.c) |
|`AG_SWAP_SONG` | `AG_SWAP_SOUND` |Plays when you press AG_SWAP (process_magic.c) |
|`CG_NORM_SONG` | `AG_NORM_SOUND` |Plays when you press CG_NORM (process_magic.c) |
|`CG_SWAP_SONG` | `AG_SWAP_SOUND` |Plays when you press CG_SWAP (process_magic.c) |
|`MUSIC_ON_SONG` | `MUSIC_ON_SOUND` |Plays when music mode is activated (process_music.c) |
|`MUSIC_OFF_SONG` | `MUSIC_OFF_SOUND` |Plays when music mode is deactivated (process_music.c) |
|`MIDI_ON_SONG` | `MUSIC_ON_SOUND` |Plays when midi mode is activated (process_music.c) |
|`MIDI_OFF_SONG` | `MUSIC_OFF_SOUND` |Plays when midi mode is deactivated (process_music.c) |
|`CHROMATIC_SONG` | `CHROMATIC_SOUND` |Plays when the chromatic music mode is selected (process_music.c) |
|`GUITAR_SONG` | `GUITAR_SOUND` |Plays when the guitar music mode is selected (process_music.c) |
|`VIOLIN_SONG` | `VIOLIN_SOUND` |Plays when the violin music mode is selected (process_music.c) |
|`MAJOR_SONG` | `MAJOR_SOUND` |Plays when the major music mode is selected (process_music.c) |
|`DEFAULT_LAYER_SONGS` | *Not defined* |Plays song when switched default layers with [`set_single_persistent_default_layer(layer)`](ref_functions.md#setting-the-persistent-default-layer)(quantum.c) |
|`SENDSTRING_BELL` | *Not defined* |Plays chime when the "enter" ("\a") character is sent (send_string.c) |
## Tempo
the 'speed' at which SONGs are played is dictated by the set Tempo, which is measured in beats-per-minute. Note lengths are defined relative to that.
The initial/default tempo is set to 120 bpm, but can be configured by setting `TEMPO_DEFAULT` in `config.c`.
There is also a set of functions to modify the tempo from within the user/keymap code:
```c
void audio_set_tempo(uint8_t tempo);
void audio_increase_tempo(uint8_t tempo_change);
void audio_decrease_tempo(uint8_t tempo_change);
```
## ARM Audio Volume
For ARM devices, you can adjust the DAC sample values. If your board is too loud for you or your coworkers, you can set the max using `AUDIO_DAC_SAMPLE_MAX` in your `config.h`:
```c
#define AUDIO_DAC_SAMPLE_MAX 4095U
```
the DAC usually runs in 12Bit mode, hence a volume of 100% = 4095U
Note: this only adjusts the volume aka 'works' if you stick to WAVEFORM_SQUARE, since its samples are generated on the fly - any other waveform uses a hardcoded/precomputed sample-buffer.
## Voices
Aka "audio effects", different ones can be enabled by setting in `config.h` these defines:
`#define AUDIO_VOICES` to enable the feature, and `#define AUDIO_VOICE_DEFAULT something` to select a specific effect
for details see quantum/audio/voices.h and .c
## Music Mode
The music mode maps your columns to a chromatic scale, and your rows to octaves. This works best with ortholinear keyboards, but can be made to work with others. All keycodes less than `0xFF` get blocked, so you won't type while playing notes - if you have special keys/mods, those will still work. A work-around for this is to jump to a different layer with KC_NOs before (or after) enabling music mode.
Recording is experimental due to some memory issues - if you experience some weird behavior, unplugging/replugging your keyboard will fix things.
Keycodes available:
* `MU_ON` - Turn music mode on
* `MU_OFF` - Turn music mode off
* `MU_TOG` - Toggle music mode
* `MU_MOD` - Cycle through the music modes:
* `CHROMATIC_MODE` - Chromatic scale, row changes the octave
* `GUITAR_MODE` - Chromatic scale, but the row changes the string (+5 st)
* `VIOLIN_MODE` - Chromatic scale, but the row changes the string (+7 st)
* `MAJOR_MODE` - Major scale
In music mode, the following keycodes work differently, and don't pass through:
* `LCTL` - start a recording
* `LALT` - stop recording/stop playing
* `LGUI` - play recording
* `KC_UP` - speed-up playback
* `KC_DOWN` - slow-down playback
The pitch standard (`PITCH_STANDARD_A`) is 440.0f by default - to change this, add something like this to your `config.h`:
#define PITCH_STANDARD_A 432.0f
You can completely disable Music Mode as well. This is useful, if you're pressed for space on your controller. To disable it, add this to your `config.h`:
#define NO_MUSIC_MODE
### Music Mask
By default, `MUSIC_MASK` is set to `keycode < 0xFF` which means keycodes less than `0xFF` are turned into notes, and don't output anything. You can change this by defining this in your `config.h` like this:
#define MUSIC_MASK keycode != KC_NO
Which will capture all keycodes - be careful, this will get you stuck in music mode until you restart your keyboard!
For a more advanced way to control which keycodes should still be processed, you can use `music_mask_kb(keycode)` in `<keyboard>.c` and `music_mask_user(keycode)` in your `keymap.c`:
bool music_mask_user(uint16_t keycode) {
switch (keycode) {
case RAISE:
case LOWER:
return false;
default:
return true;
}
}
Things that return false are not part of the mask, and are always processed.
### Music Map
By default, the Music Mode uses the columns and row to determine the scale for the keys. For a board that uses a rectangular matrix that matches the keyboard layout, this is just fine. However, for boards that use a more complicated matrix (such as the Planck Rev6, or many split keyboards) this would result in a very skewed experience.
However, the Music Map option allows you to remap the scaling for the music mode, so it fits the layout, and is more natural.
To enable this feature, add `#define MUSIC_MAP` to your `config.h` file, and then you will want to add a `uint8_t music_map` to your keyboard's `c` file, or your `keymap.c`.
```c
const uint8_t music_map[MATRIX_ROWS][MATRIX_COLS] = LAYOUT_ortho_4x12(
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
);
```
You will want to use whichever `LAYOUT` macro that your keyboard uses here. This maps it to the correct key location. Start in the bottom left of the keyboard layout, and move to the right, and then upwards. Fill in all the entries until you have a complete matrix.
You can look at the [Planck Keyboard](https://github.com/qmk/qmk_firmware/blob/e9ace1487887c1f8b4a7e8e6d87c322988bec9ce/keyboards/planck/planck.c#L24-L29) as an example of how to implement this.
## Audio Click
This adds a click sound each time you hit a button, to simulate click sounds from the keyboard. And the sounds are slightly different for each keypress, so it doesn't sound like a single long note, if you type rapidly.
* `CK_TOGG` - Toggles the status (will play sound if enabled)
* `CK_ON` - Turns on Audio Click (plays sound)
* `CK_OFF` - Turns off Audio Click (doesn't play sound)
* `CK_RST` - Resets the frequency to the default state (plays sound at default frequency)
* `CK_UP` - Increases the frequency of the clicks (plays sound at new frequency)
* `CK_DOWN` - Decreases the frequency of the clicks (plays sound at new frequency)
The feature is disabled by default, to save space. To enable it, add this to your `config.h`:
#define AUDIO_CLICKY
You can configure the default, min and max frequencies, the stepping and built in randomness by defining these values:
| Option | Default Value | Description |
|--------|---------------|-------------|
| `AUDIO_CLICKY_FREQ_DEFAULT` | 440.0f | Sets the default/starting audio frequency for the clicky sounds. |
| `AUDIO_CLICKY_FREQ_MIN` | 65.0f | Sets the lowest frequency (under 60f are a bit buggy). |
| `AUDIO_CLICKY_FREQ_MAX` | 1500.0f | Sets the highest frequency. Too high may result in coworkers attacking you. |
| `AUDIO_CLICKY_FREQ_FACTOR` | 1.18921f| Sets the stepping of UP/DOWN key codes. This is a multiplicative factor. The default steps the frequency up/down by a musical minor third. |
| `AUDIO_CLICKY_FREQ_RANDOMNESS` | 0.05f | Sets a factor of randomness for the clicks, Setting this to `0f` will make each click identical, and `1.0f` will make this sound much like the 90's computer screen scrolling/typing effect. |
| `AUDIO_CLICKY_DELAY_DURATION` | 1 | An integer note duration where 1 is 1/16th of the tempo, or a sixty-fourth note (see `quantum/audio/musical_notes.h` for implementation details). The main clicky effect will be delayed by this duration. Adjusting this to values around 6-12 will help compensate for loud switches. |
## MIDI Functionality
See [MIDI](feature_midi.md)
## Audio Keycodes
|Key |Aliases |Description |
|----------------|---------|----------------------------------|
|`AU_ON` | |Audio mode on |
|`AU_OFF` | |Audio mode off |
|`AU_TOG` | |Toggles Audio mode |
|`CLICKY_TOGGLE` |`CK_TOGG`|Toggles Audio clicky mode |
|`CLICKY_UP` |`CK_UP` |Increases frequency of the clicks |
|`CLICKY_DOWN` |`CK_DOWN`|Decreases frequency of the clicks |
|`CLICKY_RESET` |`CK_RST` |Resets frequency to default |
|`MU_ON` | |Turns on Music Mode |
|`MU_OFF` | |Turns off Music Mode |
|`MU_TOG` | |Toggles Music Mode |
|`MU_MOD` | |Cycles through the music modes |

View File

@ -1,356 +0,0 @@
# Auto Shift: Why Do We Need a Shift Key?
Tap a key and you get its character. Tap a key, but hold it *slightly* longer
and you get its shifted state. Voilà! No shift key needed!
## Why Auto Shift?
Many people suffer from various forms of RSI. A common cause is stretching your
fingers repetitively long distances. For us on the keyboard, the pinky does that
all too often when reaching for the shift key. Auto Shift looks to alleviate that
problem.
## How Does It Work?
When you tap a key, it stays depressed for a short period of time before it is
then released. This depressed time is a different length for everyone. Auto Shift
defines a constant `AUTO_SHIFT_TIMEOUT` which is typically set to twice your
normal pressed state time. When you press a key, a timer starts, and if you
have not released the key after the `AUTO_SHIFT_TIMEOUT` period, then a shifted
version of the key is emitted. If the time is less than the `AUTO_SHIFT_TIMEOUT`
time, or you press another key, then the normal state is emitted.
If `AUTO_SHIFT_REPEAT` is defined, there is keyrepeat support. Holding the key
down will repeat the shifted key, though this can be disabled with
`AUTO_SHIFT_NO_AUTO_REPEAT`. If you want to repeat the normal key, then tap it
once then immediately (within `TAPPING_TERM`) hold it down again (this works
with the shifted value as well if auto-repeat is disabled).
There are also the `get_auto_shift_repeat` and `get_auto_shift_no_auto_repeat`
functions for more granular control. Neither will have an effect unless
`AUTO_SHIFT_REPEAT_PER_KEY` or `AUTO_SHIFT_NO_AUTO_REPEAT_PER_KEY` respectively
are defined.
## Are There Limitations to Auto Shift?
Yes, unfortunately.
1. You will have characters that are shifted when you did not intend on shifting, and
other characters you wanted shifted, but were not. This simply comes down to
practice. As we get in a hurry, we think we have hit the key long enough for a
shifted version, but we did not. On the other hand, we may think we are tapping
the keys, but really we have held it for a little longer than anticipated.
2. Additionally, with keyrepeat the desired shift state can get mixed up. It will
always 'belong' to the last key pressed. For example, keyrepeating a capital
and then tapping something lowercase (whether or not it's an Auto Shift key)
will result in the capital's *key* still being held, but shift not.
3. Auto Shift does not apply to Tap Hold keys. For automatic shifting of Tap Hold
keys see [Retro Shift](#retro-shift).
## How Do I Enable Auto Shift?
Add to your `rules.mk` in the keymap folder:
AUTO_SHIFT_ENABLE = yes
If no `rules.mk` exists, you can create one.
Then compile and install your new firmware with Auto Key enabled! That's it!
## Modifiers
By default, Auto Shift is disabled for any key press that is accompanied by one or more
modifiers. Thus, Ctrl+A that you hold for a really long time is not the same
as Ctrl+Shift+A.
You can re-enable Auto Shift for modifiers by adding a define to your `config.h`
```c
#define AUTO_SHIFT_MODIFIERS
```
In which case, Ctrl+A held past the `AUTO_SHIFT_TIMEOUT` will be sent as Ctrl+Shift+A
## Configuring Auto Shift
If desired, there is some configuration that can be done to change the
behavior of Auto Shift. This is done by setting various variables the
`config.h` file located in your keymap folder. If no `config.h` file exists, you can create one.
A sample is
```c
#pragma once
#define AUTO_SHIFT_TIMEOUT 150
#define NO_AUTO_SHIFT_SPECIAL
```
### AUTO_SHIFT_TIMEOUT (Value in ms)
This controls how long you have to hold a key before you get the shifted state.
Obviously, this is different for everyone. For the common person, a setting of
135 to 150 works great. However, one should start with a value of at least 175, which
is the default value. Then work down from there. The idea is to have the shortest time required to get the shifted state without having false positives.
Play with this value until things are perfect. Many find that all will work well
at a given value, but one or two keys will still emit the shifted state on
occasion. This is simply due to habit and holding some keys a little longer
than others. Once you find this value, work on tapping your problem keys a little
quicker than normal and you will be set.
?> Auto Shift has three special keys that can help you get this value right very quick. See "Auto Shift Setup" for more details!
For more granular control of this feature, you can add the following to your `config.h`:
```c
#define AUTO_SHIFT_TIMEOUT_PER_KEY
```
You can then add the following function to your keymap:
```c
uint16_t get_autoshift_timeout(uint16_t keycode, keyrecord_t *record) {
switch(keycode) {
case AUTO_SHIFT_NUMERIC:
return 2 * get_generic_autoshift_timeout();
case AUTO_SHIFT_SPECIAL:
return get_generic_autoshift_timeout() + 50;
case AUTO_SHIFT_ALPHA:
default:
return get_generic_autoshift_timeout();
}
}
```
Note that you cannot override individual keys that are in one of those groups
if you are using them; trying to add a case for `KC_A` in the above example will
not compile as `AUTO_SHIFT_ALPHA` is there. A possible solution is a second switch
above to handle individual keys with no default case and only referencing the
groups in the below fallback switch.
### NO_AUTO_SHIFT_SPECIAL (simple define)
Do not Auto Shift special keys, which include -\_, =+, [{, ]}, ;:, '", ,<, .>,
and /?
### NO_AUTO_SHIFT_NUMERIC (simple define)
Do not Auto Shift numeric keys, zero through nine.
### NO_AUTO_SHIFT_ALPHA (simple define)
Do not Auto Shift alpha characters, which include A through Z.
### Auto Shift Per Key
There are functions that allows you to determine which keys shold be autoshifted, much like the tap-hold keys.
The first of these, used to simply add a key to Auto Shift, is `get_custom_auto_shifted_key`:
```c
bool get_custom_auto_shifted_key(uint16_t keycode, keyrecord_t *record) {
switch(keycode) {
case KC_DOT:
return true;
default:
return false;
}
}
```
For more granular control, there is `get_auto_shifted_key`. The default function looks like this:
```c
bool get_auto_shifted_key(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
# ifndef NO_AUTO_SHIFT_ALPHA
case KC_A ... KC_Z:
# endif
# ifndef NO_AUTO_SHIFT_NUMERIC
case KC_1 ... KC_0:
# endif
# ifndef NO_AUTO_SHIFT_SPECIAL
case KC_TAB:
case KC_MINUS ... KC_SLASH:
case KC_NONUS_BACKSLASH:
# endif
return true;
}
return get_custom_auto_shifted_key(keycode, record);
}
```
This functionality is enabled by default, and does not need a define.
### AUTO_SHIFT_REPEAT (simple define)
Enables keyrepeat.
### AUTO_SHIFT_NO_AUTO_REPEAT (simple define)
Disables automatically keyrepeating when `AUTO_SHIFT_TIMEOUT` is exceeded.
## Custom Shifted Values
Especially on small keyboards, the default shifted value for many keys is not
optimal. To provide more customizability, there are two user-definable
functions, `autoshift_press/release_user`. These register or unregister the
correct value for the passed key. Below is an example adding period to Auto
Shift and making its shifted value exclamation point. Make sure to use weak
mods - setting real would make any keys following it use their shifted values
as if you were holding the key. Clearing of modifiers is handled by Auto Shift,
and the OS-sent shift value if keyrepeating multiple keys is always that of
the last key pressed (whether or not it's an Auto Shift key).
You can also have non-shifted keys for the shifted values (or even no shifted
value), just don't set a shift modifier!
```c
bool get_custom_auto_shifted_key(uint16_t keycode, keyrecord_t *record) {
switch(keycode) {
case KC_DOT:
return true;
default:
return false;
}
}
void autoshift_press_user(uint16_t keycode, bool shifted, keyrecord_t *record) {
switch(keycode) {
case KC_DOT:
register_code16((!shifted) ? KC_DOT : KC_EXLM);
break;
default:
if (shifted) {
add_weak_mods(MOD_BIT(KC_LSFT));
}
// & 0xFF gets the Tap key for Tap Holds, required when using Retro Shift
register_code16((IS_RETRO(keycode)) ? keycode & 0xFF : keycode);
}
}
void autoshift_release_user(uint16_t keycode, bool shifted, keyrecord_t *record) {
switch(keycode) {
case KC_DOT:
unregister_code16((!shifted) ? KC_DOT : KC_EXLM);
break;
default:
// & 0xFF gets the Tap key for Tap Holds, required when using Retro Shift
// The IS_RETRO check isn't really necessary here, always using
// keycode & 0xFF would be fine.
unregister_code16((IS_RETRO(keycode)) ? keycode & 0xFF : keycode);
}
}
```
## Retro Shift
Holding and releasing a Tap Hold key without pressing another key will ordinarily
result in only the hold. With `retro shift` enabled this action will instead
produce a shifted version of the tap keycode on release.
It does not require [Retro Tapping](tap_hold.md#retro-tapping) to be enabled, and
if both are enabled the state of `retro tapping` will only apply if the tap keycode
is not matched by Auto Shift. `RETRO_TAPPING_PER_KEY` and its corresponding
function, however, are checked before `retro shift` is applied.
To enable `retro shift`, add the following to your `config.h`:
```c
#define RETRO_SHIFT
```
If `RETRO_SHIFT` is defined to a value, hold times greater than that value will
not produce a tap on release for Mod Taps, and instead triggers the hold action.
This enables modifiers to be held for combining with mouse clicks without
generating taps on release. For example:
```c
#define RETRO_SHIFT 500
```
This value (if set) must be greater than one's `TAPPING_TERM`, as the key press
must be designated as a 'hold' by `process_tapping` before we send the modifier.
There is no such limitation in regards to `AUTO_SHIFT_TIMEOUT` for normal keys.
### Retro Shift and Tap Hold Configurations
Tap Hold Configurations work a little differently when using Retro Shift.
Referencing `TAPPING_TERM` makes little sense, as holding longer would result in
shifting one of the keys.
`IGNORE_MOD_TAP_INTERRUPT` changes *only* rolling from a mod tap (releasing it
first), sending both keys instead of the modifier on the second. Its effects on
nested presses are ignored.
As nested taps were changed to act as though `PERMISSIVE_HOLD` is set unless only
`IGNORE_MOD_TAP_INTERRUPT` is (outside of Retro Shift), and Retro Shift ignores
`IGNORE_MOD_TAP_INTERRUPT`, `PERMISSIVE_HOLD` has no effect on Mod Taps.
Nested taps will *always* act as though the `TAPPING_TERM` was exceeded for both
Mod and Layer Tap keys.
## Using Auto Shift Setup
This will enable you to define three keys temporarily to increase, decrease and report your `AUTO_SHIFT_TIMEOUT`.
### Setup
Map three keys temporarily in your keymap:
| Key Name | Description |
|----------|-----------------------------------------------------|
| KC_ASDN | Lower the Auto Shift timeout variable (down) |
| KC_ASUP | Raise the Auto Shift timeout variable (up) |
| KC_ASRP | Report your current Auto Shift timeout value |
| KC_ASON | Turns on the Auto Shift Function |
| KC_ASOFF | Turns off the Auto Shift Function |
| KC_ASTG | Toggles the state of the Auto Shift feature |
Compile and upload your new firmware.
### Use
It is important to note that during these tests, you should be typing
completely normal and with no intention of shifted keys.
1. Type multiple sentences of alphabetical letters.
2. Observe any upper case letters.
3. If there are none, press the key you have mapped to `KC_ASDN` to decrease
time Auto Shift timeout value and go back to step 1.
4. If there are some upper case letters, decide if you need to work on tapping
those keys with less down time, or if you need to increase the timeout.
5. If you decide to increase the timeout, press the key you have mapped to
`KC_ASUP` and go back to step 1.
6. Once you are happy with your results, press the key you have mapped to
`KC_ASRP`. The keyboard will type by itself the value of your
`AUTO_SHIFT_TIMEOUT`.
7. Update `AUTO_SHIFT_TIMEOUT` in your `config.h` with the value reported.
8. Add `AUTO_SHIFT_NO_SETUP` to your `config.h`.
9. Remove the key bindings `KC_ASDN`, `KC_ASUP` and `KC_ASRP`.
10. Compile and upload your new firmware.
#### An Example Run
hello world. my name is john doe. i am a computer programmer playing with
keyboards right now.
[PRESS KC_ASDN quite a few times]
heLLo woRLd. mY nAMe is JOHn dOE. i AM A compUTeR proGRaMMER PlAYiNG witH
KEYboArDS RiGHT NOw.
[PRESS KC_ASUP a few times]
hello world. my name is john Doe. i am a computer programmer playing with
keyboarDs right now.
[PRESS KC_ASRP]
115
The keyboard typed `115` which represents your current `AUTO_SHIFT_TIMEOUT`
value. You are now set! Practice on the *D* key a little bit that showed up
in the testing and you'll be golden.

View File

@ -1,220 +0,0 @@
# Backlighting :id=backlighting
Many keyboards support backlit keys by way of individual LEDs placed through or underneath the keyswitches. This feature is distinct from both the [RGB underglow](feature_rgblight.md) and [RGB matrix](feature_rgb_matrix.md) features as it usually allows for only a single colour per switch, though you can obviously install multiple different single coloured LEDs on a keyboard.
QMK is able to control the brightness of these LEDs by switching them on and off rapidly in a certain ratio, a technique known as *Pulse Width Modulation*, or PWM. By altering the duty cycle of the PWM signal, it creates the illusion of dimming.
The MCU can only supply so much current to its GPIO pins. Instead of powering the backlight directly from the MCU, the backlight pin is connected to a transistor or MOSFET that switches the power to the LEDs.
Most keyboards have backlighting enabled by default if they support it, but if it is not working for you, check that your `rules.mk` includes the following:
```make
BACKLIGHT_ENABLE = yes
```
## Keycodes :id=keycodes
Once enabled, the following keycodes below can be used to change the backlight level.
|Key |Description |
|---------|-----------------------------------|
|`BL_TOGG`|Turn the backlight on or off |
|`BL_STEP`|Cycle through backlight levels |
|`BL_ON` |Set the backlight to max brightness|
|`BL_OFF` |Turn the backlight off |
|`BL_INC` |Increase the backlight level |
|`BL_DEC` |Decrease the backlight level |
|`BL_BRTG`|Toggle backlight breathing |
## Functions :id=functions
These functions can be used to change the backlighting in custom code:
|Function |Description |
|------------------------|--------------------------------------------|
|`backlight_toggle()` |Turn the backlight on or off |
|`backlight_enable()` |Turn the backlight on |
|`backlight_disable()` |Turn the backlight off |
|`backlight_step()` |Cycle through backlight levels |
|`backlight_increase()` |Increase the backlight level |
|`backlight_decrease()` |Decrease the backlight level |
|`backlight_level(x)` |Sets the backlight level to specified level |
|`get_backlight_level()` |Return the current backlight level |
|`is_backlight_enabled()`|Return whether the backlight is currently on|
If backlight breathing is enabled (see below), the following functions are also available:
|Function |Description |
|---------------------|--------------------------------------|
|`breathing_toggle()` |Turn the backlight breathing on or off|
|`breathing_enable()` |Turns on backlight breathing |
|`breathing_disable()`|Turns off backlight breathing |
## Configuration :id=configuration
To select which driver to use, configure your `rules.mk` with the following:
```make
BACKLIGHT_DRIVER = software
```
Valid driver values are `pwm`, `software`, `custom` or `no`. See below for help on individual drivers.
To configure the backlighting, `#define` these in your `config.h`:
|Define |Default |Description |
|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|
|`BACKLIGHT_PIN` |*Not defined* |The pin that controls the LED(s) |
|`BACKLIGHT_LEVELS` |`3` |The number of brightness levels (maximum 31 excluding off) |
|`BACKLIGHT_CAPS_LOCK` |*Not defined* |Enable Caps Lock indicator using backlight (for keyboards without dedicated LED) |
|`BACKLIGHT_BREATHING` |*Not defined* |Enable backlight breathing, if supported |
|`BREATHING_PERIOD` |`6` |The length of one backlight "breath" in seconds |
|`BACKLIGHT_ON_STATE` |`1` |The state of the backlight pin when the backlight is "on" - `1` for high, `0` for low |
|`BACKLIGHT_LIMIT_VAL` |`255` |The maximum duty cycle of the backlight -- `255` allows for full brightness, any lower will decrease the maximum.|
|`BACKLIGHT_DEFAULT_LEVEL` |`BACKLIGHT_LEVELS`|The default backlight level to use upon clearing the EEPROM |
|`BACKLIGHT_DEFAULT_BREATHING`|*Not defined* |Whether to enable backlight breathing upon clearing the EEPROM |
Unless you are designing your own keyboard, you generally should not need to change the `BACKLIGHT_PIN` or `BACKLIGHT_ON_STATE`.
### Backlight On State :id=backlight-on-state
Most backlight circuits are driven by an N-channel MOSFET or NPN transistor. This means that to turn the transistor *on* and light the LEDs, you must drive the backlight pin, connected to the gate or base, *high*.
Sometimes, however, a P-channel MOSFET, or a PNP transistor is used. In this case, when the transistor is on, the pin is driven *low* instead.
This functionality is configured at the keyboard level with the `BACKLIGHT_ON_STATE` define.
### AVR Driver :id=avr-driver
The `pwm` driver is configured by default, however the equivalent setting within `rules.mk` would be:
```make
BACKLIGHT_DRIVER = pwm
```
#### Caveats :id=avr-caveats
On AVR boards, QMK automatically decides which driver to use according to the following table:
|Backlight Pin|AT90USB64/128|AT90USB162|ATmega16/32U4|ATmega16/32U2|ATmega32A|ATmega328/P|
|-------------|-------------|----------|-------------|-------------|---------|-----------|
|`B1` | | | | | |Timer 1 |
|`B2` | | | | | |Timer 1 |
|`B5` |Timer 1 | |Timer 1 | | | |
|`B6` |Timer 1 | |Timer 1 | | | |
|`B7` |Timer 1 |Timer 1 |Timer 1 |Timer 1 | | |
|`C4` |Timer 3 | | | | | |
|`C5` |Timer 3 |Timer 1 | |Timer 1 | | |
|`C6` |Timer 3 |Timer 1 |Timer 3 |Timer 1 | | |
|`D4` | | | | |Timer 1 | |
|`D5` | | | | |Timer 1 | |
All other pins will use timer-assisted software PWM:
|Audio Pin|Audio Timer|Software PWM Timer|
|---------|-----------|------------------|
|`C4` |Timer 3 |Timer 1 |
|`C5` |Timer 3 |Timer 1 |
|`C6` |Timer 3 |Timer 1 |
|`B5` |Timer 1 |Timer 3 |
|`B6` |Timer 1 |Timer 3 |
|`B7` |Timer 1 |Timer 3 |
When both timers are in use for Audio, the backlight PWM cannot use a hardware timer, and will instead be triggered during the matrix scan. In this case, breathing is not supported, and the backlight might flicker, because the PWM computation may not be called with enough timing precision.
#### Hardware PWM Implementation :id=hardware-pwm-implementation
When using the supported pins for backlighting, QMK will use a hardware timer configured to output a PWM signal. This timer will count up to `ICRx` (by default `0xFFFF`) before resetting to 0.
The desired brightness is calculated and stored in the `OCRxx` register. When the counter reaches this value, the backlight pin will go low, and is pulled high again when the counter resets.
In this way `OCRxx` essentially controls the duty cycle of the LEDs, and thus the brightness, where `0x0000` is completely off and `0xFFFF` is completely on.
The breathing effect is achieved by registering an interrupt handler for `TIMER1_OVF_vect` that is called whenever the counter resets, roughly 244 times per second.
In this handler, the value of an incrementing counter is mapped onto a precomputed brightness curve. To turn off breathing, the interrupt handler is simply disabled, and the brightness reset to the level stored in EEPROM.
#### Timer Assisted PWM Implementation :id=timer-assisted-implementation
When `BACKLIGHT_PIN` is not set to a hardware backlight pin, QMK will use a hardware timer configured to trigger software interrupts. This time will count up to `ICRx` (by default `0xFFFF`) before resetting to 0.
When resetting to 0, the CPU will fire an OVF (overflow) interrupt that will turn the LEDs on, starting the duty cycle.
The desired brightness is calculated and stored in the `OCRxx` register. When the counter reaches this value, the CPU will fire a Compare Output match interrupt, which will turn the LEDs off.
In this way `OCRxx` essentially controls the duty cycle of the LEDs, and thus the brightness, where `0x0000` is completely off and `0xFFFF` is completely on.
The breathing effect is the same as in the hardware PWM implementation.
### ARM Driver :id=arm-configuration
While still in its early stages, ARM backlight support aims to eventually have feature parity with AVR. The `pwm` driver is configured by default, however the equivalent setting within `rules.mk` would be:
```make
BACKLIGHT_DRIVER = pwm
```
#### ChibiOS Configuration :id=arm-configuration
The following `#define`s apply only to ARM-based keyboards:
|Define |Default|Description |
|-----------------------|-------|-----------------------------------|
|`BACKLIGHT_PWM_DRIVER` |`PWMD4`|The PWM driver to use |
|`BACKLIGHT_PWM_CHANNEL`|`3` |The PWM channel to use |
|`BACKLIGHT_PAL_MODE` |`2` |The pin alternative function to use|
See the ST datasheet for your particular MCU to determine these values. Unless you are designing your own keyboard, you generally should not need to change them.
#### Caveats :id=arm-caveats
Currently only hardware PWM is supported, not timer assisted, and does not provide automatic configuration.
### Software PWM Driver :id=software-pwm-driver
In this mode, PWM is "emulated" while running other keyboard tasks. It offers maximum hardware compatibility without extra platform configuration. The tradeoff is the backlight might jitter when the keyboard is busy. To enable, add this to your `rules.mk`:
```make
BACKLIGHT_DRIVER = software
```
#### Multiple Backlight Pins :id=multiple-backlight-pins
Most keyboards have only one backlight pin which controls all backlight LEDs (especially if the backlight is connected to a hardware PWM pin).
In software PWM, it is possible to define multiple backlight pins, which will be turned on and off at the same time during the PWM duty cycle.
This feature allows to set, for instance, the Caps Lock LED's (or any other controllable LED) brightness at the same level as the other LEDs of the backlight. This is useful if you have mapped Control in place of Caps Lock and you need the Caps Lock LED to be part of the backlight instead of being activated when Caps Lock is on, as it is usually wired to a separate pin from the backlight.
To activate multiple backlight pins, add something like this to your `config.h`, instead of `BACKLIGHT_PIN`:
```c
#define BACKLIGHT_PINS { F5, B2 }
```
### Custom Driver :id=custom-driver
If none of the above drivers apply to your board (for example, you are using a separate IC to control the backlight), you can implement a custom backlight driver using this simple API provided by QMK. To enable, add this to your `rules.mk`:
```make
BACKLIGHT_DRIVER = custom
```
Then implement any of these hooks:
```c
void backlight_init_ports(void) {
// Optional - runs on startup
// Usually you want to configure pins here
}
void backlight_set(uint8_t level) {
// Optional - runs on level change
// Usually you want to respond to the new value
}
void backlight_task(void) {
// Optional - runs periodically
// Note that this is called in the main keyboard loop,
// so long running actions here can cause performance issues
}
```
## Example Schematic
In this typical example, the backlight LEDs are all connected in parallel towards an N-channel MOSFET. Its gate pin is wired to one of the microcontroller's GPIO pins through a 470Ω resistor to avoid ringing.
A pulldown resistor is also placed between the gate pin and ground to keep it at a defined state when it is not otherwise being driven by the MCU.
The values of these resistors are not critical - see [this Electronics StackExchange question](https://electronics.stackexchange.com/q/68748) for more information.
![Backlight example circuit](https://i.imgur.com/BmAvoUC.png)

View File

@ -1,46 +0,0 @@
# Bluetooth
## Bluetooth Known Supported Hardware
Currently Bluetooth support is limited to AVR based chips. For Bluetooth 2.1, QMK has support for RN-42 modules. For more recent BLE protocols, currently only the Adafruit Bluefruit SPI Friend is directly supported. BLE is needed to connect to iOS devices. Note iOS does not support mouse input.
|Board |Bluetooth Protocol |Connection Type|rules.mk |Bluetooth Chip|
|----------------------------------------------------------------|--------------------|---------------|--------------------------------|--------------|
|Roving Networks RN-42 (Sparkfun Bluesmirf) |Bluetooth Classic |UART |`BLUETOOTH_DRIVER = RN42` |RN-42 |
|[Bluefruit LE SPI Friend](https://www.adafruit.com/product/2633)|Bluetooth Low Energy|SPI |`BLUETOOTH_DRIVER = BluefruitLE`|nRF51822 |
Not Supported Yet but possible:
* [Bluefruit LE UART Friend](https://www.adafruit.com/product/2479). [Possible tmk implementation found in](https://github.com/tmk/tmk_keyboard/issues/514)
* HC-05 boards flashed with RN-42 firmware. They apparently both use the CSR BC417 Chip. Flashing it with RN-42 firmware gives it HID capability.
* Sparkfun Bluetooth Mate
* HM-13 based boards
### Adafruit BLE SPI Friend
Currently The only bluetooth chipset supported by QMK is the Adafruit Bluefruit SPI Friend. It's a Nordic nRF51822 based chip running Adafruit's custom firmware. Data is transmitted via Adafruit's SDEP over Hardware SPI. The [Feather 32u4 Bluefruit LE](https://www.adafruit.com/product/2829) is supported as it's an AVR mcu connected via SPI to the Nordic BLE chip with Adafruit firmware. If Building a custom board with the SPI friend it would be easiest to just use the pin selection that the 32u4 feather uses but you can change the pins in the config.h options with the following defines:
* `#define BLUEFRUIT_LE_RST_PIN D4`
* `#define BLUEFRUIT_LE_CS_PIN B4`
* `#define BLUEFRUIT_LE_IRQ_PIN E6`
A Bluefruit UART friend can be converted to an SPI friend, however this [requires](https://github.com/qmk/qmk_firmware/issues/2274) some reflashing and soldering directly to the MDBT40 chip.
<!-- FIXME: Document bluetooth support more completely. -->
## Bluetooth Rules.mk Options
The currently supported Bluetooth chipsets do not support [N-Key Rollover (NKRO)](reference_glossary.md#n-key-rollover-nkro), so `rules.mk` must contain `NKRO_ENABLE = no`.
Add the following to your `rules.mk`:
```make
BLUETOOTH_ENABLE = yes
BLUETOOTH_DRIVER = BluefruitLE # or RN42
```
## Bluetooth Keycodes
This is used when multiple keyboard outputs can be selected. Currently this only allows for switching between USB and Bluetooth on keyboards that support both.
|Name |Description |
|----------|----------------------------------------------|
|`OUT_AUTO`|Automatically switch between USB and Bluetooth|
|`OUT_USB` |USB only |
|`OUT_BT` |Bluetooth only |

View File

@ -1,81 +0,0 @@
# Bootmagic Lite :id=bootmagic-lite
The Bootmagic Lite feature that only handles jumping into the bootloader. This is great for boards that don't have a physical reset button, giving you a way to jump into the bootloader
On some keyboards Bootmagic Lite is disabled by default. If this is the case, it must be explicitly enabled in your `rules.mk` with:
```make
BOOTMAGIC_ENABLE = yes
```
Additionally, you may want to specify which key to use. This is especially useful for keyboards that have unusual matrices. To do so, you need to specify the row and column of the key that you want to use. Add these entries to your `config.h` file:
```c
#define BOOTMAGIC_LITE_ROW 0
#define BOOTMAGIC_LITE_COLUMN 1
```
By default, these are set to 0 and 0, which is usually the "ESC" key on a majority of keyboards.
And to trigger the bootloader, you hold this key down when plugging the keyboard in. Just the single key.
!> Using Bootmagic Lite will **always reset** the EEPROM, so you will lose any settings that have been saved.
## Split Keyboards
When [handedness](feature_split_keyboard.md#setting-handedness) is predetermined via options like `SPLIT_HAND_PIN` or `EE_HANDS`, you might need to configure a different key between halves. To identify the correct key for the right half, examine the split key matrix defined in the `<keyboard>.h` file, e.g.:
```c
#define LAYOUT_split_3x5_2( \
L01, L02, L03, L04, L05, R01, R02, R03, R04, R05, \
L06, L07, L08, L09, L10, R06, R07, R08, R09, R10, \
L11, L12, L13, L14, L15, R11, R12, R13, R14, R15, \
L16, L17, R16, R17 \
) \
{ \
{ L01, L02, L03, L04, L05 }, \
{ L06, L07, L08, L09, L10 }, \
{ L11, L12, L13, L14, L15 }, \
{ L16, L17, KC_NO, KC_NO, KC_NO }, \
{ R01, R02, R03, R04, R05 }, \
{ R06, R07, R08, R09, R10 }, \
{ R11, R12, R13, R14, R15 }, \
{ R16, R17, KC_NO, KC_NO, KC_NO } \
}
```
If you pick the top right key for the right half, it is `R05` on the top layout. Within the key matrix below, `R05` is located on row 4 columnn 4. To use that key as the right half's Bootmagic Lite trigger, add these entries to your `config.h` file:
```c
#define BOOTMAGIC_LITE_ROW_RIGHT 4
#define BOOTMAGIC_LITE_COLUMN_RIGHT 4
```
?> These values are not set by default.
## Advanced Bootmagic Lite
The `bootmagic_lite` function is defined weakly, so that you can replace this in your code, if you need. A great example of this is the Zeal60 boards that have some additional handling needed.
To replace the function, all you need to do is add something like this to your code:
```c
void bootmagic_lite(void) {
matrix_scan();
wait_ms(DEBOUNCE * 2);
matrix_scan();
if (matrix_get_row(BOOTMAGIC_LITE_ROW) & (1 << BOOTMAGIC_LITE_COLUMN)) {
// Jump to bootloader.
bootloader_jump();
}
}
```
You can define additional logic here. For instance, resetting the EEPROM or requiring additional keys to be pressed to trigger Bootmagic Lite. Keep in mind that `bootmagic_lite` is called before a majority of features are initialized in the firmware.
## Addenda
To manipulate settings that were formerly configured through the now-deprecated full Bootmagic feature, see [Magic Keycodes](keycodes_magic.md).
The Command feature, formerly known as Magic, also allows you to control different aspects of your keyboard. While it shares some functionality with Magic Keycodes, it also allows you to do things that Magic Keycodes cannot, such as printing version information to the console. For more information, see [Command](feature_command.md).

View File

@ -1,365 +0,0 @@
# Combos
The Combo feature is a chording type solution for adding custom actions. It lets you hit multiple keys at once and produce a different effect. For instance, hitting `A` and `S` within the combo term would hit `ESC` instead, or have it perform even more complex tasks.
To enable this feature, you need to add `COMBO_ENABLE = yes` to your `rules.mk`.
Additionally, in your `config.h`, you'll need to specify the number of combos that you'll be using, by adding `#define COMBO_COUNT 1` (replacing 1 with the number that you're using). It is also possible to not define this and instead set the variable `COMBO_LEN` yourself. There's a trick where we don't need to think about this variable at all. More on this later.
Then, in your `keymap.c` file, you'll need to define a sequence of keys, terminated with `COMBO_END`, and a structure to list the combination of keys, and its resulting action.
```c
const uint16_t PROGMEM test_combo1[] = {KC_A, KC_B, COMBO_END};
const uint16_t PROGMEM test_combo2[] = {KC_C, KC_D, COMBO_END};
combo_t key_combos[COMBO_COUNT] = {
COMBO(test_combo1, KC_ESC),
COMBO(test_combo2, LCTL(KC_Z)), // keycodes with modifiers are possible too!
};
```
This will send "Escape" if you hit the A and B keys, and Ctrl+Z when you hit the C and D keys.
As of [PR#8591](https://github.com/qmk/qmk_firmware/pull/8591/), it is possible to fire combos from ModTap keys and LayerTap keys. So in the above example you could have keys `LSFT_T(KC_A)` and `LT(_LAYER, KC_B)` and it would work. So Home Row Mods and Home Row Combos at same time is now a thing!
It is also now possible to overlap combos. Before, with the example below both combos would activate when all three keys were pressed. Now only the three key combo will activate.
```c
const uint16_t PROGMEM test_combo1[] = {LSFT_T(KC_A), LT(_LAYER, KC_B), COMBO_END};
const uint16_t PROGMEM test_combo2[] = {LSFT_T(KC_A), LT(_LAYER, KC_B), KC_C, COMBO_END};
combo_t key_combos[COMBO_COUNT] = {
COMBO(test_combo1, KC_ESC)
COMBO(test_combo2, KC_TAB)
};
```
Executing more complex keycodes like ModTaps and LayerTaps is now also possible.
## Examples
If you want to add a list, then you'd use something like this:
```c
enum combos {
AB_ESC,
JK_TAB,
QW_SFT,
SD_LAYER,
};
const uint16_t PROGMEM ab_combo[] = {KC_A, KC_B, COMBO_END};
const uint16_t PROGMEM jk_combo[] = {KC_J, KC_K, COMBO_END};
const uint16_t PROGMEM qw_combo[] = {KC_Q, KC_W, COMBO_END};
const uint16_t PROGMEM sd_combo[] = {KC_S, KC_D, COMBO_END};
combo_t key_combos[COMBO_COUNT] = {
[AB_ESC] = COMBO(ab_combo, KC_ESC),
[JK_TAB] = COMBO(jk_combo, KC_TAB),
[QW_SFT] = COMBO(qw_combo, KC_LSFT)
[SD_LAYER] = COMBO(sd_combo, MO(_LAYER)),
};
```
For a more complicated implementation, you can use the `process_combo_event` function to add custom handling.
Additionally, this example shows how you can leave `COMBO_COUNT` undefined.
```c
enum combo_events {
EM_EMAIL,
BSPC_LSFT_CLEAR,
COMBO_LENGTH
};
uint16_t COMBO_LEN = COMBO_LENGTH; // remove the COMBO_COUNT define and use this instead!
const uint16_t PROGMEM email_combo[] = {KC_E, KC_M, COMBO_END};
const uint16_t PROGMEM clear_line_combo[] = {KC_BSPC, KC_LSFT, COMBO_END};
combo_t key_combos[] = {
[EM_EMAIL] = COMBO_ACTION(email_combo),
[BSPC_LSFT_CLEAR] = COMBO_ACTION(clear_line_combo),
};
/* COMBO_ACTION(x) is same as COMBO(x, KC_NO) */
void process_combo_event(uint16_t combo_index, bool pressed) {
switch(combo_index) {
case EM_EMAIL:
if (pressed) {
SEND_STRING("john.doe@example.com");
}
break;
case BSPC_LSFT_CLEAR:
if (pressed) {
tap_code16(KC_END);
tap_code16(S(KC_HOME));
tap_code16(KC_BSPC);
}
break;
}
}
```
This will send "john.doe@example.com" if you chord E and M together, and clear the current line with Backspace and Left-Shift. You could change this to do stuff like play sounds or change settings.
It is worth noting that `COMBO_ACTION`s are not needed anymore. As of [PR#8591](https://github.com/qmk/qmk_firmware/pull/8591/), it is possible to run your own custom keycodes from combos. Just define the custom keycode, program its functionality in `process_record_user`, and define a combo with `COMBO(<key_array>, <your_custom_keycode>)`. See the first example in [Macros](feature_macros.md).
## Keycodes
You can enable, disable and toggle the Combo feature on the fly. This is useful if you need to disable them temporarily, such as for a game. The following keycodes are available for use in your `keymap.c`
|Keycode |Description |
|----------|---------------------------------|
|`CMB_ON` |Turns on Combo feature |
|`CMB_OFF` |Turns off Combo feature |
|`CMB_TOG` |Toggles Combo feature on and off |
# Advanced Configuration
These configuration settings can be set in your `config.h` file.
## Combo Term
By default, the timeout for the Combos to be recognized is set to 50ms. This can be changed if accidental combo misfires are happening or if you're having difficulties pressing keys at the same time. For instance, `#define COMBO_TERM 40` would set the timeout period for combos to 40ms.
## Buffer and state sizes
If you're using long combos, or you have a lot of overlapping combos, you may run into issues with this, as the buffers may not be large enough to accommodate what you're doing. In this case, you can configure the sizes of the buffers used. Be aware, larger combo sizes and larger buffers will increase memory usage!
To configure the amount of keys a combo can be composed of, change the following:
| Keys | Define to be set |
|------|-----------------------------------|
| 6 | `#define EXTRA_SHORT_COMBOS` |
| 8 | QMK Default |
| 16 | `#define EXTRA_LONG_COMBOS` |
| 32 | `#define EXTRA_EXTRA_LONG_COMBOS` |
Defining `EXTRA_SHORT_COMBOS` combines a combo's internal state into just one byte. This can, in some cases, save some memory. If it doesn't, no point using it. If you do, you also have to make sure you don't define combos with more than 6 keys.
Processing combos has two buffers, one for the key presses, another for the combos being activated. Use the following options to configure the sizes of these buffers:
| Define | Default |
|-------------------------------------|------------------------------------------------------|
| `#define COMBO_KEY_BUFFER_LENGTH 8` | 8 (the key amount `(EXTRA_)EXTRA_LONG_COMBOS` gives) |
| `#define COMBO_BUFFER_LENGTH 4` | 4 |
## Modifier Combos
If a combo resolves to a Modifier, the window for processing the combo can be extended independently from normal combos. By default, this is disabled but can be enabled with `#define COMBO_MUST_HOLD_MODS`, and the time window can be configured with `#define COMBO_HOLD_TERM 150` (default: `TAPPING_TERM`). With `COMBO_MUST_HOLD_MODS`, you cannot tap the combo any more which makes the combo less prone to misfires.
## Strict key press order
By defining `COMBO_MUST_PRESS_IN_ORDER` combos only activate when the keys are pressed in the same order as they are defined in the key array.
## Per Combo Timing, Holding, Tapping and Key Press Order
For each combo, it is possible to configure the time window it has to pressed in, if it needs to be held down, if it needs to be tapped, or if its keys need to be pressed in order.
For example, tap-only combos are useful if any (or all) of the underlying keys are mod-tap or layer-tap keys. When you tap the combo, you get the combo result. When you press the combo and hold it down, the combo doesn't activate. Instead the keys are processed separately as if the combo wasn't even there.
In order to use these features, the following configuration options and functions need to be defined. Coming up with useful timings and configuration is left as an exercise for the reader.
| Config Flag | Function | Description |
|-----------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| `COMBO_TERM_PER_COMBO` | uint16_t get_combo_term(uint16_t index, combo_t \*combo) | Optional per-combo timeout window. (default: `COMBO_TERM`) |
| `COMBO_MUST_HOLD_PER_COMBO` | bool get_combo_must_hold(uint16_t index, combo_t \*combo) | Controls if a given combo should fire immediately on tap or if it needs to be held. (default: `false`) |
| `COMBO_MUST_TAP_PER_COMBO` | bool get_combo_must_tap(uint16_t index, combo_t \*combo) | Controls if a given combo should fire only if tapped within `COMBO_HOLD_TERM`. (default: `false`) |
| `COMBO_MUST_PRESS_IN_ORDER_PER_COMBO` | bool get_combo_must_press_in_order(uint16_t index, combo_t \*combo) | Controls if a given combo should fire only if its keys are pressed in order. (default: `true`) |
Examples:
```c
uint16_t get_combo_term(uint16_t index, combo_t *combo) {
// decide by combo->keycode
switch (combo->keycode) {
case KC_X:
return 50;
}
// or with combo index, i.e. its name from enum.
switch (index) {
case COMBO_NAME_HERE:
return 9001;
}
// And if you're feeling adventurous, you can even decide by the keys in the chord,
// i.e. the exact array of keys you defined for the combo.
// This can be useful if your combos have a common key and you want to apply the
// same combo term for all of them.
if (combo->keys[0] == KC_ENT) { // if first key in the array is Enter
return 150;
}
return COMBO_TERM;
}
bool get_combo_must_hold(uint16_t index, combo_t *combo) {
// Same as above, decide by keycode, the combo index, or by the keys in the chord.
if (KEYCODE_IS_MOD(combo->keycode) ||
(combo->keycode >= QK_MOMENTARY && combo->keycode <= QK_MOMENTARY_MAX) // MO(kc) keycodes
) {
return true;
}
switch (index) {
case COMBO_NAME_HERE:
return true;
}
return false;
}
bool get_combo_must_tap(uint16_t index, combo_t *combo) {
// If you want all combos to be tap-only, just uncomment the next line
// return true
// If you want *all* combos, that have Mod-Tap/Layer-Tap/Momentary keys in its chord, to be tap-only, this is for you:
uint16_t key;
uint8_t idx = 0;
while ((key = pgm_read_word(&combo->keys[idx])) != COMBO_END) {
switch (key) {
case QK_MOD_TAP...QK_MOD_TAP_MAX:
case QK_LAYER_TAP...QK_LAYER_TAP_MAX:
case QK_MOMENTARY...QK_MOMENTARY_MAX:
return true;
}
idx += 1;
}
return false;
}
bool get_combo_must_press_in_order(uint16_t combo_index, combo_t *combo) {
switch (combo_index) {
/* List combos here that you want to only activate if their keys
* are pressed in the same order as they are defined in the combo's key
* array. */
case COMBO_NAME_HERE:
return true;
default:
return false;
}
}
```
## Generic hook to (dis)allow a combo activation
By defining `COMBO_SHOULD_TRIGGER` and its companying function `bool combo_should_trigger(uint16_t combo_index, combo_t *combo, uint16_t keycode, keyrecord_t *record)` you can block or allow combos to activate on the conditions of your choice.
For example, you could disallow some combos on the base layer and allow them on another. Or disable combos on the home row when a timer is running.
Examples:
```c
bool combo_should_trigger(uint16_t combo_index, combo_t *combo, uint16_t keycode, keyrecord_t *record) {
/* Disable combo `SOME_COMBO` on layer `_LAYER_A` */
switch (combo_index) {
case SOME_COMBO:
if (layer_state_is(_LAYER_A)) {
return false;
}
}
return true;
}
```
## Variable Length Combos
If you leave `COMBO_COUNT` undefined in `config.h`, it allows you to programmatically declare the size of the Combo data structure and avoid updating `COMBO_COUNT`. Instead a variable called `COMBO_LEN` has to be set. It can be set with something similar to the following in `keymap.c`: `uint16_t COMBO_LEN = sizeof(key_combos) / sizeof(key_combos[0]);` or by adding `COMBO_LENGTH` as the *last* entry in the combo enum and then `uint16_t COMBO_LEN = COMBO_LENGTH;` as such:
```c
enum myCombos {
...,
COMBO_LENGTH
};
uint16_t COMBO_LEN = COMBO_LENGTH;
```
Regardless of the method used to declare `COMBO_LEN`, this also requires to convert the `combo_t key_combos[COMBO_COUNT] = {...};` line to `combo_t key_combos[] = {...};`.
## Combo timer
Normally, the timer is started on the first key press and then reset on every subsequent key press within the `COMBO_TERM`.
Inputting combos is relaxed like this, but also slightly more prone to accidental misfires.
The next two options alter the behaviour of the timer.
### `#define COMBO_STRICT_TIMER`
With `COMBO_STRICT_TIMER`, the timer is started only on the first key press.
Inputting combos is now less relaxed; you need to make sure the full chord is pressed within the `COMBO_TERM`.
Misfires are less common but if you type multiple combos fast, there is a
chance that the latter ones might not activate properly.
### `#define COMBO_NO_TIMER`
By defining `COMBO_NO_TIMER`, the timer is disabled completely and combos are activated on the first key release.
This also disables the "must hold" functionalities as they just wouldn't work at all.
## Customizable key releases
By defining `COMBO_PROCESS_KEY_RELEASE` and implementing the function `bool process_combo_key_release(uint16_t combo_index, combo_t *combo, uint8_t key_index, uint16_t keycode)`, you can run your custom code on each key release after a combo was activated. For example you could change the RGB colors, activate haptics, or alter the modifiers.
You can also release a combo early by returning `true` from the function.
Here's an example where a combo resolves to two modifiers, and on key releases the modifiers are unregistered one by one, depending on which key was released.
```c
enum combos {
AB_MODS,
COMBO_LENGTH
};
uint16_t COMBO_LEN = COMBO_LENGTH;
const uint16_t PROGMEM ab_combo[] = {KC_A, KC_B, COMBO_END};
combo_t key_combos[] = {
[AB_MODS] = COMBO(ab_combo, LCTL(KC_LSFT)),
};
bool process_combo_key_release(uint16_t combo_index, combo_t *combo, uint8_t key_index, uint16_t keycode) {
switch (combo_index) {
case AB_MODS:
switch(keycode) {
case KC_A:
unregister_mods(MOD_MASK_CTRL);
break;
case KC_B:
unregister_mods(MOD_MASK_SHIFT);
break;
}
return false; // do not release combo
}
return false;
}
```
## Layer independent combos
If you, for example, use multiple base layers for different key layouts, one for QWERTY, and another one for Colemak, you might want your combos to work from the same key positions on all layers. Defining the same combos again for another layout is redundant and takes more memory. The solution is to just check the keycodes from one layer.
With `#define COMBO_ONLY_FROM_LAYER _LAYER_A` the combos' keys are always checked from layer `_LAYER_A` even though the active layer would be `_LAYER_B`.
## User callbacks
In addition to the keycodes, there are a few functions that you can use to set the status, or check it:
|Function |Description |
|-----------|--------------------------------------------------------------------|
| `combo_enable()` | Enables the combo feature |
| `combo_disable()` | Disables the combo feature, and clears the combo buffer |
| `combo_toggle()` | Toggles the state of the combo feature |
| `is_combo_enabled()` | Returns the status of the combo feature state (true or false) |
# Dictionary Management
Having 3 places to update when adding new combos or altering old ones does become cumbersome when you have a lot of combos. We can alleviate this with some magic! ... If you consider C macros magic.
First, you need to add `VPATH += keyboards/gboards` to your `rules.mk`. Next, include the file `g/keymap_combo.h` in your `keymap.c`.
!> This functionality uses the same `process_combo_event` function as `COMBO_ACTION` macros do, so you cannot use the function yourself in your keymap. Instead, you have to define the `case`s of the `switch` statement by themselves within `inject.h`, which `g/keymap_combo.h` will then include into the function.
Then, write your combos in `combos.def` file in the following manner:
```c
// name result chord keys
COMB(AB_ESC, KC_ESC, KC_A, KC_B)
COMB(JK_TAB, KC_TAB, KC_J, KC_K)
COMB(JKL_SPC, KC_SPC, KC_J, KC_K, KC_L)
COMB(BSSL_CLR, KC_NO, KC_BSPC, KC_LSFT) // using KC_NO as the resulting keycode is the same as COMBO_ACTION before.
COMB(QW_UNDO, C(KC_Z), KC_Q, KC_W)
SUBS(TH_THE, "the", KC_T, KC_H) // SUBS uses SEND_STRING to output the given string.
...
```
Now, you can update only one place to add or alter combos. You don't even need to remember to update the `COMBO_COUNT` or the `COMBO_LEN` variables at all. Everything is taken care of. Magic!
For small to huge ready made dictionaries of combos, you can check out http://combos.gboards.ca/.

View File

@ -1,51 +0,0 @@
# Command
Command, formerly known as Magic, is a way to change your keyboard's behavior without having to flash or unplug it to use [Bootmagic Lite](feature_bootmagic.md). There is a lot of overlap between this functionality and the [Magic Keycodes](keycodes_magic.md). Wherever possible we encourage you to use that feature instead of Command.
On some keyboards Command is disabled by default. If this is the case, it must be explicitly enabled in your `rules.mk`:
```make
COMMAND_ENABLE = yes
```
## Usage
To use Command, hold down the key combination defined by the `IS_COMMAND()` macro. By default this is Left Shift+Right Shift. Then, press the key corresponding to the command you want. For example, to output the current QMK version to the QMK Toolbox console, press Left Shift+Right Shift+`V`.
## Configuration
If you would like to change the key assignments for Command, `#define` these in your `config.h` at either the keyboard or keymap level. All keycode assignments here must omit the `KC_` prefix.
|Define |Default |Description |
|------------------------------------|--------------------------------|------------------------------------------------|
|`IS_COMMAND()` |`(get_mods() == MOD_MASK_SHIFT)`|The key combination to activate Command |
|`MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS` |`true` |Set default layer with the Function row |
|`MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS` |`true` |Set default layer with the number keys |
|`MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM`|`false` |Set default layer with `MAGIC_KEY_LAYER0..9` |
|`MAGIC_KEY_DEBUG` |`D` |Toggle debugging over serial |
|`MAGIC_KEY_DEBUG_MATRIX` |`X` |Toggle key matrix debugging |
|`MAGIC_KEY_DEBUG_KBD` |`K` |Toggle keyboard debugging |
|`MAGIC_KEY_DEBUG_MOUSE` |`M` |Toggle mouse debugging |
|`MAGIC_KEY_CONSOLE` |`C` |Enable the Command console |
|`MAGIC_KEY_VERSION` |`V` |Print the running QMK version to the console |
|`MAGIC_KEY_STATUS` |`S` |Print the current keyboard status to the console|
|`MAGIC_KEY_HELP` |`H` |Print Command help to the console |
|`MAGIC_KEY_HELP_ALT` |`SLASH` |Print Command help to the console (alternate) |
|`MAGIC_KEY_LAYER0` |`0` |Make layer 0 the default layer |
|`MAGIC_KEY_LAYER0_ALT` |`GRAVE` |Make layer 0 the default layer (alternate) |
|`MAGIC_KEY_LAYER1` |`1` |Make layer 1 the default layer |
|`MAGIC_KEY_LAYER2` |`2` |Make layer 2 the default layer |
|`MAGIC_KEY_LAYER3` |`3` |Make layer 3 the default layer |
|`MAGIC_KEY_LAYER4` |`4` |Make layer 4 the default layer |
|`MAGIC_KEY_LAYER5` |`5` |Make layer 5 the default layer |
|`MAGIC_KEY_LAYER6` |`6` |Make layer 6 the default layer |
|`MAGIC_KEY_LAYER7` |`7` |Make layer 7 the default layer |
|`MAGIC_KEY_LAYER8` |`8` |Make layer 8 the default layer |
|`MAGIC_KEY_LAYER9` |`9` |Make layer 9 the default layer |
|`MAGIC_KEY_BOOTLOADER` |`B` |Jump to bootloader |
|`MAGIC_KEY_BOOTLOADER_ALT` |`ESC` |Jump to bootloader (alternate) |
|`MAGIC_KEY_LOCK` |`CAPS` |Lock the keyboard so nothing can be typed |
|`MAGIC_KEY_EEPROM` |`E` |Print stored EEPROM config to the console |
|`MAGIC_KEY_EEPROM_CLEAR` |`BSPACE` |Clear the EEPROM |
|`MAGIC_KEY_NKRO` |`N` |Toggle N-Key Rollover (NKRO) |
|`MAGIC_KEY_SLEEP_LED` |`Z` |Toggle LED when computer is sleeping |

View File

@ -1,134 +0,0 @@
# Contact bounce / contact chatter
Mechanical switches often don't have a clean single transition between pressed and unpressed states.
In an ideal world, when you press a switch, you would expect the digital pin to see something like this:
(X axis showing time
```
voltage +----------------------
^ |
| |
| ------------------+
----> time
```
However in the real world you will actually see contact bounce, which will look like multiple 1->0 and 0->1 transitions,
until the value finally settles.
```
+-+ +--+ +-------------
| | | | |
| | | | |
+-----------------+ +-+ +-+
```
The time it takes for the switch to settle might vary with switch type, age, and even pressing technique.
If the device chooses not to mitigate contact bounce, then often actions that happen when the switch is pressed are repeated
multiple times.
There are many ways to handle contact bounce ("Debouncing"). Some include employing additional hardware, for example an RC filter,
while there are various ways to do debouncing in software too, often called debounce algorithms. This page discusses software
debouncing methods available in QMK.
While technically not considered contact bounce/contact chatter, some switch technologies are susceptible to noise, meaning,
while the key is not changing state, sometimes short random 0->1 or 1->0 transitions might be read by the digital circuit, for example:
```
+-+
| |
| |
+-----------------+ +--------------------
```
Many debounce methods (but not all) will also make the device resistant to noise. If you are working with a technology that is
susceptible to noise, you must choose a debounce method that will also mitigate noise for you.
## Types of debounce algorithms
1) Unit of time: Timestamp (milliseconds) vs Cycles (scans)
* Debounce algorithms often have a 'debounce time' parameter, that specifies the maximum settling time of the switch contacts.
This time might be measured in various units:
* Cycles-based debouncing waits n cycles (scans), decreasing count by one each matrix_scan
* Timestamp-based debouncing stores the millisecond timestamp a change occurred, and does substraction to figure out time elapsed.
* Timestamp-based debouncing is usually superior, especially in the case of noise-resistant devices because settling times of physical
switches is specified in units of time, and should not depend on the matrix scan-rate of the keyboard.
* Cycles-based debouncing is sometimes considered inferior, because the settling time that it is able to compensate for depends on the
performance of the matrix scanning code. If you use cycles-based debouncing, and you significantly improve the performance of your scanning
code, you might end up with less effective debouncing. A situation in which cycles-based debouncing might be preferable is when
noise is present, and the scanning algorithm is slow, or variable speed. Even if your debounce algorithm is fundamentally noise-resistant,
if the scanning is slow, and you are using a timestamp-based algorithm, you might end up making a debouncing decision based on only two
sampled values, which will limit the noise-resistance of the algorithm.
* Currently all built-in debounce algorithms support timestamp-based debouncing only. In the future we might
implement cycles-based debouncing, and it will be selectable via a ```config.h``` macro.
2) Symmetric vs Asymmetric
* Symmetric - apply the same debouncing algorithm, to both key-up and key-down events.
* Recommended naming convention: ```sym_*```
* Asymmetric - apply different debouncing algorithms to key-down and key-up events. E.g. Eager key-down, Defer key-up.
* Recommended naming convention: ```asym_*``` followed by details of the type of algorithm in use, in order, for key-down and then key-up
3) Eager vs Defer
* Eager - any key change is reported immediately. All further inputs for DEBOUNCE ms are ignored.
* Eager algorithms are not noise-resistant.
* Recommended naming conventions:
* ```sym_eager_*```
* ```asym_eager_*_*```: key-down is using eager algorithm
* ```asym_*_eager_*```: key-up is using eager algorithm
* Defer - wait for no changes for DEBOUNCE ms before reporting change.
* Defer algorithms are noise-resistant
* Recommended naming conventions:
* ```sym_defer_*```
* ```asym_defer_*_*```: key-down is using defer algorithm
* ```asym_*_defer_*```: key-up is using defer algorithm
4) Global vs Per-Key vs Per-Row
* Global - one timer for all keys. Any key change state affects global timer
* Recommended naming convention: ```*_g```
* Per-key - one timer per key
* Recommended naming convention: ```*_pk```
* Per-row - one timer per row
* Recommended naming convention: ```*_pr```
* Per-key and per-row algorithms consume more resources (in terms of performance,
and ram usage), but fast typists might prefer them over global.
## Debounce algorithms supported by QMK
QMK supports multiple debounce algorithms through its debounce API.
### Debounce selection
| DEBOUNCE_TYPE | Description | What else is needed |
| ------------- | --------------------------------------------------- | ----------------------------- |
| Not defined | Use the default algorithm, currently sym_defer_g | Nothing |
| custom | Use your own debounce code | ```SRC += debounce.c``` add your own debounce.c and implement necessary functions |
| Anything Else | Use another algorithm from quantum/debounce/* | Nothing |
**Regarding split keyboards**:
The debounce code is compatible with split keyboards.
### Selecting an included debouncing method
Keyboards may select one of the already implemented debounce methods, by adding to ```rules.mk``` the following line:
```
DEBOUNCE_TYPE = <name of algorithm>
```
Where name of algorithm is one of:
* ```sym_defer_g``` - debouncing per keyboard. On any state change, a global timer is set. When ```DEBOUNCE``` milliseconds of no changes has occurred, all input changes are pushed.
* This is the current default algorithm. This is the highest performance algorithm with lowest memory usage, and it's also noise-resistant.
* ```sym_eager_pr``` - debouncing per row. On any state change, response is immediate, followed by locking the row ```DEBOUNCE``` milliseconds of no further input for that row.
For use in keyboards where refreshing ```NUM_KEYS``` 8-bit counters is computationally expensive / low scan rate, and fingers usually only hit one row at a time. This could be
appropriate for the ErgoDox models; the matrix is rotated 90°, and hence its "rows" are really columns, and each finger only hits a single "row" at a time in normal use.
* ```sym_eager_pk``` - debouncing per key. On any state change, response is immediate, followed by ```DEBOUNCE``` milliseconds of no further input for that key
* ```sym_defer_pr``` - debouncing per row. On any state change, a per-row timer is set. When ```DEBOUNCE``` milliseconds of no changes have occurred on that row, the entire row is pushed. Can improve responsiveness over `sym_defer_g` while being less susceptible than per-key debouncers to noise.
* ```sym_defer_pk``` - debouncing per key. On any state change, a per-key timer is set. When ```DEBOUNCE``` milliseconds of no changes have occurred on that key, the key status change is pushed.
* ```asym_eager_defer_pk``` - debouncing per key. On a key-down state change, response is immediate, followed by ```DEBOUNCE``` milliseconds of no further input for that key. On a key-up state change, a per-key timer is set. When ```DEBOUNCE``` milliseconds of no changes have occurred on that key, the key-up status change is pushed.
### A couple algorithms that could be implemented in the future:
* ```sym_defer_pr```
* ```sym_eager_g```
### Use your own debouncing code
You have the option to implement you own debouncing algorithm. To do this:
* Set ```DEBOUNCE_TYPE = custom``` in ```rules.mk```.
* Add ```SRC += debounce.c``` in ```rules.mk```
* Add your own ```debounce.c```. Look at current implementations in ```quantum/debounce``` for examples.
* Debouncing occurs after every raw matrix scan.
* Use num_rows rather than MATRIX_ROWS, so that split keyboards are supported correctly.
* If the algorithm might be applicable to other keyboards, please consider adding it to ```quantum/debounce```

View File

@ -1,35 +0,0 @@
## Digitizer
The digitizer HID interface allows setting the mouse cursor position at absolute coordinates, unlike the Pointing Device feature that applies relative displacements.
To enable the digitizer interface, add the following line to your rules.mk:
```make
DIGITIZER_ENABLE = yes
```
In order to change the mouse cursor position from your keymap.c file, include the digitizer header :
```c
#include "digitizer.h"
```
This gives you access to the `digitizer` structure which members allow you to change the cursor position.
The coordinates are normalized, meaning there value must be set between 0 and 1. For the `x` coordinate, the value `0` is the leftmost position, whereas the value `1` is the rightmost position.
For the `y` coordinate, `0` is at the top and `1` at the bottom.
Here is an example setting the cursor in the middle of the screen:
```c
digitizer_t digitizer;
digitizer.x = 0.5;
digitizer.y = 0.5;
digitizer.tipswitch = 0;
digitizer.inrange = 1;
digitizer_set_report(digitizer);
```
The `tipswitch` member triggers what equates to a click when set to `1`. The `inrange` member is required for the change in coordinates to be taken. It can then be set to `0` in a new report to signal the end of the digitizer interaction, but it is not strictly required.
Once all members are set to the desired value, the `status` member needs its bitmask `DZ_UPDATED` to be set so the report is sent during the next main loop iteration.

View File

@ -1,109 +0,0 @@
# DIP Switches
DIP switches are supported by adding this to your `rules.mk`:
DIP_SWITCH_ENABLE = yes
and this to your `config.h`:
```c
// Connects each switch in the dip switch to the GPIO pin of the MCU
#define DIP_SWITCH_PINS { B14, A15, A10, B9 }
// For split keyboards, you can separately define the right side pins
#define DIP_SWITCH_PINS_RIGHT { ... }
```
or
```c
// Connect each switch in the DIP switch to an unused intersections in the key matrix.
#define DIP_SWITCH_MATRIX_GRID { {0,6}, {1,6}, {2,6} } // List of row and col pairs
```
## Callbacks
The callback functions can be inserted into your `<keyboard>.c`:
```c
bool dip_switch_update_kb(uint8_t index, bool active) {
if (!dip_switch_update_user(index, active)) { return false; }
return true;
}
```
or `keymap.c`:
```c
bool dip_switch_update_user(uint8_t index, bool active) {
switch (index) {
case 0:
if(active) { audio_on(); } else { audio_off(); }
break;
case 1:
if(active) { clicky_on(); } else { clicky_off(); }
break;
case 2:
if(active) { music_on(); } else { music_off(); }
break;
case 3:
if (active) {
#ifdef AUDIO_ENABLE
PLAY_SONG(plover_song);
#endif
layer_on(_PLOVER);
} else {
#ifdef AUDIO_ENABLE
PLAY_SONG(plover_gb_song);
#endif
layer_off(_PLOVER);
}
break;
}
return true;
}
```
Additionally, we support bit mask functions which allow for more complex handling.
```c
bool dip_switch_update_mask_kb(uint32_t state) {
if (!dip_switch_update_mask_user(state)) { return false; }
return true;
}
```
or `keymap.c`:
```c
bool dip_switch_update_mask_user(uint32_t state) {
if (state & (1UL<<0) && state & (1UL<<1)) {
layer_on(_ADJUST); // C on esc
} else {
layer_off(_ADJUST);
}
if (state & (1UL<<0)) {
layer_on(_TEST_A); // A on ESC
} else {
layer_off(_TEST_A);
}
if (state & (1UL<<1)) {
layer_on(_TEST_B); // B on esc
} else {
layer_off(_TEST_B);
}
return true;
}
```
## Hardware
### Connects each switch in the dip switch to the GPIO pin of the MCU
One side of the DIP switch should be wired directly to the pin on the MCU, and the other side to ground. It should not matter which side is connected to which, as it should be functionally the same.
### Connect each switch in the DIP switch to an unused intersections in the key matrix.
As with the keyswitch, a diode and DIP switch connect the ROW line to the COL line.

Some files were not shown because too many files have changed in this diff Show More