forked from mfulz_github/qmk_firmware
		
	 fe9bd0afb9
			
		
	
	
		fe9bd0afb9
		
			
		
	
	
	
	
		
			
			The dac_basic driver did not work properly with `#define AUDIO_PIN A4` (instead of configuring the A4 pin, the driver actually was switching the A5 pin to analog mode, breaking any other usage of that pin in addition to emitting a distorted signal on the improperly configured A4 pin). Fix the code to configure the A4 pin as intended.
		
			
				
	
	
		
			246 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2016-2020 Jack Humbert
 | |
|  * Copyright 2020 JohSchneider
 | |
|  *
 | |
|  * This program is free software: you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation, either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "audio.h"
 | |
| #include "ch.h"
 | |
| #include "hal.h"
 | |
| 
 | |
| /*
 | |
|   Audio Driver: DAC
 | |
| 
 | |
|   which utilizes both channels of the DAC unit many STM32 are equipped with to output a modulated square-wave, from precomputed samples stored in a buffer, which is passed to the hardware through DMA
 | |
| 
 | |
|   this driver can either be used to drive to separate speakers, wired to A4+Gnd and A5+Gnd, which allows two tones to be played simultaneously
 | |
|   OR
 | |
|   one speaker wired to A4+A5 with the AUDIO_PIN_ALT_AS_NEGATIVE define set - see docs/feature_audio
 | |
| 
 | |
| */
 | |
| 
 | |
| #if !defined(AUDIO_PIN)
 | |
| #    pragma message "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC basic)' for available options."
 | |
| // TODO: make this an 'error' instead; go through a breaking change, and add AUDIO_PIN A5 to all keyboards currently using AUDIO on STM32 based boards? - for now: set the define here
 | |
| #    define AUDIO_PIN A5
 | |
| #endif
 | |
| // check configuration for ONE speaker, connected to both DAC pins
 | |
| #if defined(AUDIO_PIN_ALT_AS_NEGATIVE) && !defined(AUDIO_PIN_ALT)
 | |
| #    error "Audio feature: AUDIO_PIN_ALT_AS_NEGATIVE set, but no pin configured as AUDIO_PIN_ALT"
 | |
| #endif
 | |
| 
 | |
| #ifndef AUDIO_PIN_ALT
 | |
| // no ALT pin defined is valid, but the c-ifs below need some value set
 | |
| #    define AUDIO_PIN_ALT -1
 | |
| #endif
 | |
| 
 | |
| #if !defined(AUDIO_STATE_TIMER)
 | |
| #    define AUDIO_STATE_TIMER GPTD8
 | |
| #endif
 | |
| 
 | |
| // square-wave
 | |
| static const dacsample_t dac_buffer_1[AUDIO_DAC_BUFFER_SIZE] = {
 | |
|     // First half is max, second half is 0
 | |
|     [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = AUDIO_DAC_SAMPLE_MAX,
 | |
|     [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = 0,
 | |
| };
 | |
| 
 | |
| // square-wave
 | |
| static const dacsample_t dac_buffer_2[AUDIO_DAC_BUFFER_SIZE] = {
 | |
|     // opposite of dac_buffer above
 | |
|     [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = 0,
 | |
|     [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX,
 | |
| };
 | |
| 
 | |
| GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
 | |
|                       .callback  = NULL,
 | |
|                       .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | |
|                       .dier      = 0U};
 | |
| GPTConfig gpt7cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
 | |
|                       .callback  = NULL,
 | |
|                       .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | |
|                       .dier      = 0U};
 | |
| 
 | |
| static void gpt_audio_state_cb(GPTDriver *gptp);
 | |
| GPTConfig   gptStateUpdateCfg = {.frequency = 10,
 | |
|                                .callback  = gpt_audio_state_cb,
 | |
|                                .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | |
|                                .dier      = 0U};
 | |
| 
 | |
| static const DACConfig dac_conf_ch1 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | |
| static const DACConfig dac_conf_ch2 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | |
| 
 | |
| /**
 | |
|  * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered
 | |
|  * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency
 | |
|  * to be a third of what we expect.
 | |
|  *
 | |
|  * Here are all the values for DAC_TRG (TSEL in the ref manual)
 | |
|  * TIM15_TRGO 0b011
 | |
|  * TIM2_TRGO  0b100
 | |
|  * TIM3_TRGO  0b001
 | |
|  * TIM6_TRGO  0b000
 | |
|  * TIM7_TRGO  0b010
 | |
|  * EXTI9      0b110
 | |
|  * SWTRIG     0b111
 | |
|  */
 | |
| static const DACConversionGroup dac_conv_grp_ch1 = {.num_channels = 1U, .trigger = DAC_TRG(0b000)};
 | |
| static const DACConversionGroup dac_conv_grp_ch2 = {.num_channels = 1U, .trigger = DAC_TRG(0b010)};
 | |
| 
 | |
| void channel_1_start(void) {
 | |
|     gptStart(&GPTD6, &gpt6cfg1);
 | |
|     gptStartContinuous(&GPTD6, 2U);
 | |
|     palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
 | |
| }
 | |
| 
 | |
| void channel_1_stop(void) {
 | |
|     gptStopTimer(&GPTD6);
 | |
|     palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL);
 | |
|     palSetPad(GPIOA, 4);
 | |
| }
 | |
| 
 | |
| static float channel_1_frequency = 0.0f;
 | |
| void         channel_1_set_frequency(float freq) {
 | |
|     channel_1_frequency = freq;
 | |
| 
 | |
|     channel_1_stop();
 | |
|     if (freq <= 0.0)  // a pause/rest has freq=0
 | |
|         return;
 | |
| 
 | |
|     gpt6cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
 | |
|     channel_1_start();
 | |
| }
 | |
| float channel_1_get_frequency(void) { return channel_1_frequency; }
 | |
| 
 | |
| void channel_2_start(void) {
 | |
|     gptStart(&GPTD7, &gpt7cfg1);
 | |
|     gptStartContinuous(&GPTD7, 2U);
 | |
|     palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
 | |
| }
 | |
| 
 | |
| void channel_2_stop(void) {
 | |
|     gptStopTimer(&GPTD7);
 | |
|     palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL);
 | |
|     palSetPad(GPIOA, 5);
 | |
| }
 | |
| 
 | |
| static float channel_2_frequency = 0.0f;
 | |
| void         channel_2_set_frequency(float freq) {
 | |
|     channel_2_frequency = freq;
 | |
| 
 | |
|     channel_2_stop();
 | |
|     if (freq <= 0.0)  // a pause/rest has freq=0
 | |
|         return;
 | |
| 
 | |
|     gpt7cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
 | |
|     channel_2_start();
 | |
| }
 | |
| float channel_2_get_frequency(void) { return channel_2_frequency; }
 | |
| 
 | |
| static void gpt_audio_state_cb(GPTDriver *gptp) {
 | |
|     if (audio_update_state()) {
 | |
| #if defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | |
|         // one piezo/speaker connected to both audio pins, the generated square-waves are inverted
 | |
|         channel_1_set_frequency(audio_get_processed_frequency(0));
 | |
|         channel_2_set_frequency(audio_get_processed_frequency(0));
 | |
| 
 | |
| #else  // two separate audio outputs/speakers
 | |
|        // primary speaker on A4, optional secondary on A5
 | |
|         if (AUDIO_PIN == A4) {
 | |
|             channel_1_set_frequency(audio_get_processed_frequency(0));
 | |
|             if (AUDIO_PIN_ALT == A5) {
 | |
|                 if (audio_get_number_of_active_tones() > 1) {
 | |
|                     channel_2_set_frequency(audio_get_processed_frequency(1));
 | |
|                 } else {
 | |
|                     channel_2_stop();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // primary speaker on A5, optional secondary on A4
 | |
|         if (AUDIO_PIN == A5) {
 | |
|             channel_2_set_frequency(audio_get_processed_frequency(0));
 | |
|             if (AUDIO_PIN_ALT == A4) {
 | |
|                 if (audio_get_number_of_active_tones() > 1) {
 | |
|                     channel_1_set_frequency(audio_get_processed_frequency(1));
 | |
|                 } else {
 | |
|                     channel_1_stop();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| void audio_driver_initialize() {
 | |
|     if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | |
|         palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
 | |
|         dacStart(&DACD1, &dac_conf_ch1);
 | |
| 
 | |
|         // initial setup of the dac-triggering timer is still required, even
 | |
|         // though it gets reconfigured and restarted later on
 | |
|         gptStart(&GPTD6, &gpt6cfg1);
 | |
|     }
 | |
| 
 | |
|     if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | |
|         palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
 | |
|         dacStart(&DACD2, &dac_conf_ch2);
 | |
| 
 | |
|         gptStart(&GPTD7, &gpt7cfg1);
 | |
|     }
 | |
| 
 | |
|     /* enable the output buffer, to directly drive external loads with no additional circuitry
 | |
|      *
 | |
|      * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers
 | |
|      * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer
 | |
|      * Note: enabling the output buffer imparts an additional dc-offset of a couple mV
 | |
|      *
 | |
|      * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet
 | |
|      * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.'
 | |
|      */
 | |
|     DACD1.params->dac->CR &= ~DAC_CR_BOFF1;
 | |
|     DACD2.params->dac->CR &= ~DAC_CR_BOFF2;
 | |
| 
 | |
|     // start state-updater
 | |
|     gptStart(&AUDIO_STATE_TIMER, &gptStateUpdateCfg);
 | |
| }
 | |
| 
 | |
| void audio_driver_stop(void) {
 | |
|     if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | |
|         gptStopTimer(&GPTD6);
 | |
| 
 | |
|         // stop the ongoing conversion and put the output in a known state
 | |
|         dacStopConversion(&DACD1);
 | |
|         dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE);
 | |
|     }
 | |
| 
 | |
|     if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | |
|         gptStopTimer(&GPTD7);
 | |
| 
 | |
|         dacStopConversion(&DACD2);
 | |
|         dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE);
 | |
|     }
 | |
|     gptStopTimer(&AUDIO_STATE_TIMER);
 | |
| }
 | |
| 
 | |
| void audio_driver_start(void) {
 | |
|     if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | |
|         dacStartConversion(&DACD1, &dac_conv_grp_ch1, (dacsample_t *)dac_buffer_1, AUDIO_DAC_BUFFER_SIZE);
 | |
|     }
 | |
|     if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | |
|         dacStartConversion(&DACD2, &dac_conv_grp_ch2, (dacsample_t *)dac_buffer_2, AUDIO_DAC_BUFFER_SIZE);
 | |
|     }
 | |
|     gptStartContinuous(&AUDIO_STATE_TIMER, 2U);
 | |
| }
 |