mirror of
				https://github.com/mfulz/qmk_firmware.git
				synced 2025-10-31 05:12:33 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			532 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			532 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
 | |
| 
 | |
| This program is free software: you can redistribute it and/or modify
 | |
| it under the terms of the GNU General Public License as published by
 | |
| the Free Software Foundation, either version 2 of the License, or
 | |
| (at your option) any later version.
 | |
| 
 | |
| This program is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| #include "i2c_master.h"
 | |
| #include "oled_driver.h"
 | |
| #include OLED_FONT_H
 | |
| #include "timer.h"
 | |
| #include "print.h"
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #if defined(__AVR__)
 | |
|   #include <avr/io.h>
 | |
|   #include <avr/pgmspace.h>
 | |
| #elif defined(ESP8266)
 | |
|   #include <pgmspace.h>
 | |
| #else // defined(ESP8266)
 | |
|   #define PROGMEM
 | |
|   #define memcpy_P(des, src, len) memcpy(des, src, len)
 | |
| #endif // defined(__AVR__)
 | |
| 
 | |
| // Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
 | |
| // Fundamental Commands
 | |
| #define CONTRAST                0x81
 | |
| #define DISPLAY_ALL_ON          0xA5
 | |
| #define DISPLAY_ALL_ON_RESUME   0xA4
 | |
| #define NORMAL_DISPLAY          0xA6
 | |
| #define DISPLAY_ON              0xAF
 | |
| #define DISPLAY_OFF             0xAE
 | |
| 
 | |
| // Scrolling Commands
 | |
| #define ACTIVATE_SCROLL         0x2F
 | |
| #define DEACTIVATE_SCROLL       0x2E
 | |
| #define SCROLL_RIGHT            0x26
 | |
| #define SCROLL_LEFT             0x27
 | |
| #define SCROLL_RIGHT_UP         0x29
 | |
| #define SCROLL_LEFT_UP          0x2A
 | |
| 
 | |
| // Addressing Setting Commands
 | |
| #define MEMORY_MODE             0x20
 | |
| #define COLUMN_ADDR             0x21
 | |
| #define PAGE_ADDR               0x22
 | |
| 
 | |
| // Hardware Configuration Commands
 | |
| #define DISPLAY_START_LINE      0x40
 | |
| #define SEGMENT_REMAP           0xA0
 | |
| #define SEGMENT_REMAP_INV       0xA1
 | |
| #define MULTIPLEX_RATIO         0xA8
 | |
| #define COM_SCAN_INC            0xC0
 | |
| #define COM_SCAN_DEC            0xC8
 | |
| #define DISPLAY_OFFSET          0xD3
 | |
| #define COM_PINS                0xDA
 | |
| 
 | |
| // Timing & Driving Commands
 | |
| #define DISPLAY_CLOCK           0xD5
 | |
| #define PRE_CHARGE_PERIOD       0xD9
 | |
| #define VCOM_DETECT             0xDB
 | |
| 
 | |
| // Charge Pump Commands
 | |
| #define CHARGE_PUMP             0x8D
 | |
| 
 | |
| // Misc defines
 | |
| #define OLED_TIMEOUT 60000
 | |
| #define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
 | |
| #define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
 | |
| 
 | |
| // i2c defines
 | |
| #define I2C_CMD 0x00
 | |
| #define I2C_DATA 0x40
 | |
| #if defined(__AVR__)
 | |
|   // already defined on ARM
 | |
|   #define I2C_TIMEOUT 100
 | |
|   #define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
 | |
| #else // defined(__AVR__)
 | |
|   #define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
 | |
| #endif // defined(__AVR__)
 | |
| #define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
 | |
| #define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT)
 | |
| 
 | |
| #define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
 | |
| 
 | |
| // Display buffer's is the same as the OLED memory layout
 | |
| // this is so we don't end up with rounding errors with
 | |
| // parts of the display unusable or don't get cleared correctly
 | |
| // and also allows for drawing & inverting
 | |
| uint8_t          oled_buffer[OLED_MATRIX_SIZE];
 | |
| uint8_t*         oled_cursor;
 | |
| OLED_BLOCK_TYPE  oled_dirty = 0;
 | |
| bool             oled_initialized = false;
 | |
| bool             oled_active = false;
 | |
| bool             oled_scrolling = false;
 | |
| uint8_t          oled_rotation = 0;
 | |
| uint8_t          oled_rotation_width = 0;
 | |
| #if !defined(OLED_DISABLE_TIMEOUT)
 | |
|   uint16_t         oled_last_activity;
 | |
| #endif
 | |
| 
 | |
| // Internal variables to reduce math instructions
 | |
| 
 | |
| #if defined(__AVR__)
 | |
| // identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
 | |
| // probably should move this into i2c_master...
 | |
| static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) {
 | |
|   i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
 | |
| 
 | |
|   for (uint16_t i = 0; i < length && status >= 0; i++) {
 | |
|     status = i2c_write(pgm_read_byte((const char*)data++), timeout);
 | |
|     if (status) break;
 | |
|   }
 | |
| 
 | |
|   i2c_stop();
 | |
| 
 | |
|   return status;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Flips the rendering bits for a character at the current cursor position
 | |
| static void InvertCharacter(uint8_t *cursor)
 | |
| {
 | |
|   const uint8_t *end = cursor + OLED_FONT_WIDTH;
 | |
|   while (cursor < end) {
 | |
|     *cursor = ~(*cursor);
 | |
|     cursor++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool oled_init(uint8_t rotation) {
 | |
|   oled_rotation = oled_init_user(rotation);
 | |
|   if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|     oled_rotation_width = OLED_DISPLAY_WIDTH;
 | |
|   } else {
 | |
|     oled_rotation_width = OLED_DISPLAY_HEIGHT;
 | |
|   }
 | |
|   i2c_init();
 | |
| 
 | |
|   static const uint8_t PROGMEM display_setup1[] = {
 | |
|     I2C_CMD,
 | |
|     DISPLAY_OFF,
 | |
|     DISPLAY_CLOCK, 0x80,
 | |
|     MULTIPLEX_RATIO, OLED_DISPLAY_HEIGHT - 1,
 | |
|     DISPLAY_OFFSET, 0x00,
 | |
|     DISPLAY_START_LINE | 0x00,
 | |
|     CHARGE_PUMP, 0x14,
 | |
|     MEMORY_MODE, 0x00, }; // Horizontal addressing mode
 | |
|   if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
 | |
|     print("oled_init cmd set 1 failed\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
 | |
|     static const uint8_t PROGMEM display_normal[] = {
 | |
|       I2C_CMD,
 | |
|       SEGMENT_REMAP_INV,
 | |
|       COM_SCAN_DEC };
 | |
|     if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_init cmd normal rotation failed\n");
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     static const uint8_t PROGMEM display_flipped[] = {
 | |
|       I2C_CMD,
 | |
|       SEGMENT_REMAP,
 | |
|       COM_SCAN_INC };
 | |
|     if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
 | |
|       print("display_flipped failed\n");
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static const uint8_t PROGMEM display_setup2[] = {
 | |
|     I2C_CMD,
 | |
|     COM_PINS, 0x02,
 | |
|     CONTRAST, 0x8F,
 | |
|     PRE_CHARGE_PERIOD, 0xF1,
 | |
|     VCOM_DETECT, 0x40,
 | |
|     DISPLAY_ALL_ON_RESUME,
 | |
|     NORMAL_DISPLAY,
 | |
|     DEACTIVATE_SCROLL,
 | |
|     DISPLAY_ON };
 | |
|   if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
 | |
|     print("display_setup2 failed\n");
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   oled_clear();
 | |
|   oled_initialized = true;
 | |
|   oled_active = true;
 | |
|   oled_scrolling = false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| __attribute__((weak))
 | |
| oled_rotation_t oled_init_user(oled_rotation_t rotation) {
 | |
|   return rotation;
 | |
| }
 | |
| 
 | |
| void oled_clear(void) {
 | |
|   memset(oled_buffer, 0, sizeof(oled_buffer));
 | |
|   oled_cursor = &oled_buffer[0];
 | |
|   oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type
 | |
| }
 | |
| 
 | |
| static void calc_bounds(uint8_t update_start, uint8_t* cmd_array)
 | |
| {
 | |
|   cmd_array[1] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
 | |
|   cmd_array[4] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
 | |
|   cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
 | |
|   cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
 | |
| }
 | |
| 
 | |
| static void calc_bounds_90(uint8_t update_start, uint8_t* cmd_array)
 | |
| {
 | |
|   cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
 | |
|   cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
 | |
|   cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];;
 | |
|   cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
 | |
| }
 | |
| 
 | |
| uint8_t crot(uint8_t a, int8_t n)
 | |
| {
 | |
|   const uint8_t mask = 0x7;
 | |
|   n &= mask;
 | |
|   return a << n | a >> (-n & mask);
 | |
| }
 | |
| 
 | |
| static void rotate_90(const uint8_t* src, uint8_t* dest)
 | |
| {
 | |
|   for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
 | |
|     uint8_t selector = (1 << i);
 | |
|     for (uint8_t j = 0; j < 8; ++j) {
 | |
|       dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void oled_render(void) {
 | |
|   // Do we have work to do?
 | |
|   if (!oled_dirty || oled_scrolling) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Find first dirty block
 | |
|   uint8_t update_start = 0;
 | |
|   while (!(oled_dirty & (1 << update_start))) { ++update_start; }
 | |
| 
 | |
|   // Set column & page position
 | |
|   static uint8_t display_start[] = {
 | |
|     I2C_CMD,
 | |
|     COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1,
 | |
|     PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1 };
 | |
|   if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|     calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
 | |
|   } else {
 | |
|     calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
 | |
|   }
 | |
| 
 | |
|   // Send column & page position
 | |
|   if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
 | |
|     print("oled_render offset command failed\n");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|     // Send render data chunk as is
 | |
|     if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_render data failed\n");
 | |
|       return;
 | |
|     }
 | |
|   } else {
 | |
|     // Rotate the render chunks
 | |
|     const static uint8_t source_map[] = OLED_SOURCE_MAP;
 | |
|     const static uint8_t target_map[] = OLED_TARGET_MAP;
 | |
| 
 | |
|     static uint8_t temp_buffer[OLED_BLOCK_SIZE];
 | |
|     memset(temp_buffer, 0, sizeof(temp_buffer));
 | |
|     for(uint8_t i = 0; i < sizeof(source_map); ++i) {
 | |
|       rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
 | |
|     }
 | |
| 
 | |
|     // Send render data chunk after rotating
 | |
|     if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_render data failed\n");
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Turn on display if it is off
 | |
|   oled_on();
 | |
| 
 | |
|   // Clear dirty flag
 | |
|   oled_dirty &= ~(1 << update_start);
 | |
| }
 | |
| 
 | |
| void oled_set_cursor(uint8_t col, uint8_t line) {
 | |
|   uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
 | |
| 
 | |
|   // Out of bounds?
 | |
|   if (index >= OLED_MATRIX_SIZE) {
 | |
|     index = 0;
 | |
|   }
 | |
| 
 | |
|   oled_cursor = &oled_buffer[index];
 | |
| }
 | |
| 
 | |
| void oled_advance_page(bool clearPageRemainder) {
 | |
|   uint16_t index = oled_cursor - &oled_buffer[0];
 | |
|   uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
 | |
| 
 | |
|   if (clearPageRemainder) {
 | |
|     // Remaining Char count
 | |
|     remaining = remaining / OLED_FONT_WIDTH;
 | |
| 
 | |
|     // Write empty character until next line
 | |
|     while (remaining--)
 | |
|       oled_write_char(' ', false);
 | |
|   } else {
 | |
|     // Next page index out of bounds?
 | |
|     if (index + remaining >= OLED_MATRIX_SIZE) {
 | |
|       index = 0;
 | |
|       remaining = 0;
 | |
|     }
 | |
| 
 | |
|     oled_cursor = &oled_buffer[index + remaining];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void oled_advance_char(void) {
 | |
|   uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
 | |
|   uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
 | |
| 
 | |
|   // Do we have enough space on the current line for the next character
 | |
|   if (remainingSpace < OLED_FONT_WIDTH) {
 | |
|     nextIndex += remainingSpace;
 | |
|   }
 | |
| 
 | |
|   // Did we go out of bounds
 | |
|   if (nextIndex >= OLED_MATRIX_SIZE) {
 | |
|     nextIndex = 0;
 | |
|   }
 | |
| 
 | |
|   // Update cursor position
 | |
|   oled_cursor = &oled_buffer[nextIndex];
 | |
| }
 | |
| 
 | |
| // Main handler that writes character data to the display buffer
 | |
| void oled_write_char(const char data, bool invert) {
 | |
|   // Advance to the next line if newline
 | |
|   if (data == '\n') {
 | |
|     // Old source wrote ' ' until end of line...
 | |
|     oled_advance_page(true);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // copy the current render buffer to check for dirty after
 | |
|   static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
 | |
|   memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
 | |
| 
 | |
|   // set the reder buffer data
 | |
|   uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
 | |
|   if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
 | |
|     memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
 | |
|   } else {
 | |
|     const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
 | |
|     memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
 | |
|   }
 | |
| 
 | |
|   // Invert if needed
 | |
|   if (invert) {
 | |
|     InvertCharacter(oled_cursor);
 | |
|   }
 | |
| 
 | |
|   // Dirty check
 | |
|   if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
 | |
|     uint16_t index = oled_cursor - &oled_buffer[0];
 | |
|     oled_dirty |= (1 << (index / OLED_BLOCK_SIZE));
 | |
|     // Edgecase check if the written data spans the 2 chunks
 | |
|     oled_dirty |= (1 << ((index + OLED_FONT_WIDTH) / OLED_BLOCK_SIZE));
 | |
|   }
 | |
| 
 | |
|   // Finally move to the next char
 | |
|   oled_advance_char();
 | |
| }
 | |
| 
 | |
| void oled_write(const char *data, bool invert) {
 | |
|   const char *end = data + strlen(data);
 | |
|   while (data < end) {
 | |
|     oled_write_char(*data, invert);
 | |
|     data++;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void oled_write_ln(const char *data, bool invert) {
 | |
|   oled_write(data, invert);
 | |
|   oled_advance_page(true);
 | |
| }
 | |
| 
 | |
| #if defined(__AVR__)
 | |
| void oled_write_P(const char *data, bool invert) {
 | |
|   uint8_t c = pgm_read_byte(data);
 | |
|   while (c != 0) {
 | |
|     oled_write_char(c, invert);
 | |
|     c = pgm_read_byte(++data);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void oled_write_ln_P(const char *data, bool invert) {
 | |
|   oled_write_P(data, invert);
 | |
|   oled_advance_page(true);
 | |
| }
 | |
| #endif // defined(__AVR__)
 | |
| 
 | |
| bool oled_on(void) {
 | |
| #if !defined(OLED_DISABLE_TIMEOUT)
 | |
|   oled_last_activity = timer_read();
 | |
| #endif
 | |
| 
 | |
|   static const uint8_t PROGMEM display_on[] = { I2C_CMD, DISPLAY_ON };
 | |
|   if (!oled_active) {
 | |
|     if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_on cmd failed\n");
 | |
|       return oled_active;
 | |
|     }
 | |
|     oled_active = true;
 | |
|   }
 | |
|   return oled_active;
 | |
| }
 | |
| 
 | |
| bool oled_off(void) {
 | |
|   static const uint8_t PROGMEM display_off[] = { I2C_CMD, DISPLAY_OFF };
 | |
|   if (oled_active) {
 | |
|     if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_off cmd failed\n");
 | |
|       return oled_active;
 | |
|     }
 | |
|     oled_active = false;
 | |
|   }
 | |
|   return !oled_active;
 | |
| }
 | |
| 
 | |
| bool oled_scroll_right(void) {
 | |
|   // Dont enable scrolling if we need to update the display
 | |
|   // This prevents scrolling of bad data from starting the scroll too early after init
 | |
|   if (!oled_dirty && !oled_scrolling) {
 | |
|     static const uint8_t PROGMEM display_scroll_right[] = {
 | |
|       I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
 | |
|     if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_scroll_right cmd failed\n");
 | |
|       return oled_scrolling;
 | |
|     }
 | |
|     oled_scrolling = true;
 | |
|   }
 | |
|   return oled_scrolling;
 | |
| }
 | |
| 
 | |
| bool oled_scroll_left(void) {
 | |
|   // Dont enable scrolling if we need to update the display
 | |
|   // This prevents scrolling of bad data from starting the scroll too early after init
 | |
|   if (!oled_dirty && !oled_scrolling) {
 | |
|     static const uint8_t PROGMEM display_scroll_left[] = {
 | |
|       I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
 | |
|     if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_scroll_left cmd failed\n");
 | |
|       return oled_scrolling;
 | |
|     }
 | |
|     oled_scrolling = true;
 | |
|   }
 | |
|   return oled_scrolling;
 | |
| }
 | |
| 
 | |
| bool oled_scroll_off(void) {
 | |
|   if (oled_scrolling) {
 | |
|     static const uint8_t PROGMEM display_scroll_off[] = { I2C_CMD, DEACTIVATE_SCROLL };
 | |
|     if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
 | |
|       print("oled_scroll_off cmd failed\n");
 | |
|       return oled_scrolling;
 | |
|     }
 | |
|     oled_scrolling = false;
 | |
|   }
 | |
|   return !oled_scrolling;
 | |
| }
 | |
| 
 | |
| uint8_t oled_max_chars(void) {
 | |
|   if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|     return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
 | |
|   }
 | |
|   return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
 | |
| }
 | |
| 
 | |
| uint8_t oled_max_lines(void) {
 | |
|   if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
 | |
|     return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
 | |
|   }
 | |
|   return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
 | |
| }
 | |
| 
 | |
| void oled_task(void) {
 | |
|   if (!oled_initialized) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   oled_set_cursor(0, 0);
 | |
| 
 | |
|   oled_task_user();
 | |
| 
 | |
|   // Smart render system, no need to check for dirty
 | |
|   oled_render();
 | |
| 
 | |
|   // Display timeout check
 | |
| #if !defined(OLED_DISABLE_TIMEOUT)
 | |
|   if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) {
 | |
|     oled_off();
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| __attribute__((weak))
 | |
| void oled_task_user(void) {
 | |
| }
 | 
