mirror of
				https://github.com/mfulz/qmk_firmware.git
				synced 2025-11-03 23:02:34 +01:00 
			
		
		
		
	The dac_basic driver did not work properly with `#define AUDIO_PIN A4` (instead of configuring the A4 pin, the driver actually was switching the A5 pin to analog mode, breaking any other usage of that pin in addition to emitting a distorted signal on the improperly configured A4 pin). Fix the code to configure the A4 pin as intended.
		
			
				
	
	
		
			246 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			246 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Copyright 2016-2020 Jack Humbert
 | 
						|
 * Copyright 2020 JohSchneider
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
#include "audio.h"
 | 
						|
#include "ch.h"
 | 
						|
#include "hal.h"
 | 
						|
 | 
						|
/*
 | 
						|
  Audio Driver: DAC
 | 
						|
 | 
						|
  which utilizes both channels of the DAC unit many STM32 are equipped with to output a modulated square-wave, from precomputed samples stored in a buffer, which is passed to the hardware through DMA
 | 
						|
 | 
						|
  this driver can either be used to drive to separate speakers, wired to A4+Gnd and A5+Gnd, which allows two tones to be played simultaneously
 | 
						|
  OR
 | 
						|
  one speaker wired to A4+A5 with the AUDIO_PIN_ALT_AS_NEGATIVE define set - see docs/feature_audio
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#if !defined(AUDIO_PIN)
 | 
						|
#    pragma message "Audio feature enabled, but no suitable pin selected as AUDIO_PIN - see docs/feature_audio under 'ARM (DAC basic)' for available options."
 | 
						|
// TODO: make this an 'error' instead; go through a breaking change, and add AUDIO_PIN A5 to all keyboards currently using AUDIO on STM32 based boards? - for now: set the define here
 | 
						|
#    define AUDIO_PIN A5
 | 
						|
#endif
 | 
						|
// check configuration for ONE speaker, connected to both DAC pins
 | 
						|
#if defined(AUDIO_PIN_ALT_AS_NEGATIVE) && !defined(AUDIO_PIN_ALT)
 | 
						|
#    error "Audio feature: AUDIO_PIN_ALT_AS_NEGATIVE set, but no pin configured as AUDIO_PIN_ALT"
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef AUDIO_PIN_ALT
 | 
						|
// no ALT pin defined is valid, but the c-ifs below need some value set
 | 
						|
#    define AUDIO_PIN_ALT -1
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(AUDIO_STATE_TIMER)
 | 
						|
#    define AUDIO_STATE_TIMER GPTD8
 | 
						|
#endif
 | 
						|
 | 
						|
// square-wave
 | 
						|
static const dacsample_t dac_buffer_1[AUDIO_DAC_BUFFER_SIZE] = {
 | 
						|
    // First half is max, second half is 0
 | 
						|
    [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = AUDIO_DAC_SAMPLE_MAX,
 | 
						|
    [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = 0,
 | 
						|
};
 | 
						|
 | 
						|
// square-wave
 | 
						|
static const dacsample_t dac_buffer_2[AUDIO_DAC_BUFFER_SIZE] = {
 | 
						|
    // opposite of dac_buffer above
 | 
						|
    [0 ... AUDIO_DAC_BUFFER_SIZE / 2 - 1]                     = 0,
 | 
						|
    [AUDIO_DAC_BUFFER_SIZE / 2 ... AUDIO_DAC_BUFFER_SIZE - 1] = AUDIO_DAC_SAMPLE_MAX,
 | 
						|
};
 | 
						|
 | 
						|
GPTConfig gpt6cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
 | 
						|
                      .callback  = NULL,
 | 
						|
                      .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | 
						|
                      .dier      = 0U};
 | 
						|
GPTConfig gpt7cfg1 = {.frequency = AUDIO_DAC_SAMPLE_RATE,
 | 
						|
                      .callback  = NULL,
 | 
						|
                      .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | 
						|
                      .dier      = 0U};
 | 
						|
 | 
						|
static void gpt_audio_state_cb(GPTDriver *gptp);
 | 
						|
GPTConfig   gptStateUpdateCfg = {.frequency = 10,
 | 
						|
                               .callback  = gpt_audio_state_cb,
 | 
						|
                               .cr2       = TIM_CR2_MMS_1, /* MMS = 010 = TRGO on Update Event.    */
 | 
						|
                               .dier      = 0U};
 | 
						|
 | 
						|
static const DACConfig dac_conf_ch1 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | 
						|
static const DACConfig dac_conf_ch2 = {.init = AUDIO_DAC_OFF_VALUE, .datamode = DAC_DHRM_12BIT_RIGHT};
 | 
						|
 | 
						|
/**
 | 
						|
 * @note The DAC_TRG(0) here selects the Timer 6 TRGO event, which is triggered
 | 
						|
 * on the rising edge after 3 APB1 clock cycles, causing our gpt6cfg1.frequency
 | 
						|
 * to be a third of what we expect.
 | 
						|
 *
 | 
						|
 * Here are all the values for DAC_TRG (TSEL in the ref manual)
 | 
						|
 * TIM15_TRGO 0b011
 | 
						|
 * TIM2_TRGO  0b100
 | 
						|
 * TIM3_TRGO  0b001
 | 
						|
 * TIM6_TRGO  0b000
 | 
						|
 * TIM7_TRGO  0b010
 | 
						|
 * EXTI9      0b110
 | 
						|
 * SWTRIG     0b111
 | 
						|
 */
 | 
						|
static const DACConversionGroup dac_conv_grp_ch1 = {.num_channels = 1U, .trigger = DAC_TRG(0b000)};
 | 
						|
static const DACConversionGroup dac_conv_grp_ch2 = {.num_channels = 1U, .trigger = DAC_TRG(0b010)};
 | 
						|
 | 
						|
void channel_1_start(void) {
 | 
						|
    gptStart(&GPTD6, &gpt6cfg1);
 | 
						|
    gptStartContinuous(&GPTD6, 2U);
 | 
						|
    palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
 | 
						|
}
 | 
						|
 | 
						|
void channel_1_stop(void) {
 | 
						|
    gptStopTimer(&GPTD6);
 | 
						|
    palSetPadMode(GPIOA, 4, PAL_MODE_OUTPUT_PUSHPULL);
 | 
						|
    palSetPad(GPIOA, 4);
 | 
						|
}
 | 
						|
 | 
						|
static float channel_1_frequency = 0.0f;
 | 
						|
void         channel_1_set_frequency(float freq) {
 | 
						|
    channel_1_frequency = freq;
 | 
						|
 | 
						|
    channel_1_stop();
 | 
						|
    if (freq <= 0.0)  // a pause/rest has freq=0
 | 
						|
        return;
 | 
						|
 | 
						|
    gpt6cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
 | 
						|
    channel_1_start();
 | 
						|
}
 | 
						|
float channel_1_get_frequency(void) { return channel_1_frequency; }
 | 
						|
 | 
						|
void channel_2_start(void) {
 | 
						|
    gptStart(&GPTD7, &gpt7cfg1);
 | 
						|
    gptStartContinuous(&GPTD7, 2U);
 | 
						|
    palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
 | 
						|
}
 | 
						|
 | 
						|
void channel_2_stop(void) {
 | 
						|
    gptStopTimer(&GPTD7);
 | 
						|
    palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL);
 | 
						|
    palSetPad(GPIOA, 5);
 | 
						|
}
 | 
						|
 | 
						|
static float channel_2_frequency = 0.0f;
 | 
						|
void         channel_2_set_frequency(float freq) {
 | 
						|
    channel_2_frequency = freq;
 | 
						|
 | 
						|
    channel_2_stop();
 | 
						|
    if (freq <= 0.0)  // a pause/rest has freq=0
 | 
						|
        return;
 | 
						|
 | 
						|
    gpt7cfg1.frequency = 2 * freq * AUDIO_DAC_BUFFER_SIZE;
 | 
						|
    channel_2_start();
 | 
						|
}
 | 
						|
float channel_2_get_frequency(void) { return channel_2_frequency; }
 | 
						|
 | 
						|
static void gpt_audio_state_cb(GPTDriver *gptp) {
 | 
						|
    if (audio_update_state()) {
 | 
						|
#if defined(AUDIO_PIN_ALT_AS_NEGATIVE)
 | 
						|
        // one piezo/speaker connected to both audio pins, the generated square-waves are inverted
 | 
						|
        channel_1_set_frequency(audio_get_processed_frequency(0));
 | 
						|
        channel_2_set_frequency(audio_get_processed_frequency(0));
 | 
						|
 | 
						|
#else  // two separate audio outputs/speakers
 | 
						|
       // primary speaker on A4, optional secondary on A5
 | 
						|
        if (AUDIO_PIN == A4) {
 | 
						|
            channel_1_set_frequency(audio_get_processed_frequency(0));
 | 
						|
            if (AUDIO_PIN_ALT == A5) {
 | 
						|
                if (audio_get_number_of_active_tones() > 1) {
 | 
						|
                    channel_2_set_frequency(audio_get_processed_frequency(1));
 | 
						|
                } else {
 | 
						|
                    channel_2_stop();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // primary speaker on A5, optional secondary on A4
 | 
						|
        if (AUDIO_PIN == A5) {
 | 
						|
            channel_2_set_frequency(audio_get_processed_frequency(0));
 | 
						|
            if (AUDIO_PIN_ALT == A4) {
 | 
						|
                if (audio_get_number_of_active_tones() > 1) {
 | 
						|
                    channel_1_set_frequency(audio_get_processed_frequency(1));
 | 
						|
                } else {
 | 
						|
                    channel_1_stop();
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void audio_driver_initialize() {
 | 
						|
    if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | 
						|
        palSetPadMode(GPIOA, 4, PAL_MODE_INPUT_ANALOG);
 | 
						|
        dacStart(&DACD1, &dac_conf_ch1);
 | 
						|
 | 
						|
        // initial setup of the dac-triggering timer is still required, even
 | 
						|
        // though it gets reconfigured and restarted later on
 | 
						|
        gptStart(&GPTD6, &gpt6cfg1);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | 
						|
        palSetPadMode(GPIOA, 5, PAL_MODE_INPUT_ANALOG);
 | 
						|
        dacStart(&DACD2, &dac_conf_ch2);
 | 
						|
 | 
						|
        gptStart(&GPTD7, &gpt7cfg1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* enable the output buffer, to directly drive external loads with no additional circuitry
 | 
						|
     *
 | 
						|
     * see: AN4566 Application note: Extending the DAC performance of STM32 microcontrollers
 | 
						|
     * Note: Buffer-Off bit -> has to be set 0 to enable the output buffer
 | 
						|
     * Note: enabling the output buffer imparts an additional dc-offset of a couple mV
 | 
						|
     *
 | 
						|
     * this is done here, reaching directly into the stm32 registers since chibios has not implemented BOFF handling yet
 | 
						|
     * (see: chibios/os/hal/ports/STM32/todo.txt '- BOFF handling in DACv1.'
 | 
						|
     */
 | 
						|
    DACD1.params->dac->CR &= ~DAC_CR_BOFF1;
 | 
						|
    DACD2.params->dac->CR &= ~DAC_CR_BOFF2;
 | 
						|
 | 
						|
    // start state-updater
 | 
						|
    gptStart(&AUDIO_STATE_TIMER, &gptStateUpdateCfg);
 | 
						|
}
 | 
						|
 | 
						|
void audio_driver_stop(void) {
 | 
						|
    if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | 
						|
        gptStopTimer(&GPTD6);
 | 
						|
 | 
						|
        // stop the ongoing conversion and put the output in a known state
 | 
						|
        dacStopConversion(&DACD1);
 | 
						|
        dacPutChannelX(&DACD1, 0, AUDIO_DAC_OFF_VALUE);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | 
						|
        gptStopTimer(&GPTD7);
 | 
						|
 | 
						|
        dacStopConversion(&DACD2);
 | 
						|
        dacPutChannelX(&DACD2, 0, AUDIO_DAC_OFF_VALUE);
 | 
						|
    }
 | 
						|
    gptStopTimer(&AUDIO_STATE_TIMER);
 | 
						|
}
 | 
						|
 | 
						|
void audio_driver_start(void) {
 | 
						|
    if ((AUDIO_PIN == A4) || (AUDIO_PIN_ALT == A4)) {
 | 
						|
        dacStartConversion(&DACD1, &dac_conv_grp_ch1, (dacsample_t *)dac_buffer_1, AUDIO_DAC_BUFFER_SIZE);
 | 
						|
    }
 | 
						|
    if ((AUDIO_PIN == A5) || (AUDIO_PIN_ALT == A5)) {
 | 
						|
        dacStartConversion(&DACD2, &dac_conv_grp_ch2, (dacsample_t *)dac_buffer_2, AUDIO_DAC_BUFFER_SIZE);
 | 
						|
    }
 | 
						|
    gptStartContinuous(&AUDIO_STATE_TIMER, 2U);
 | 
						|
}
 |