mirror of
				https://github.com/mfulz/qmk_firmware.git
				synced 2025-10-31 13:22:31 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			1942 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1942 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #define DEBUG_PRINTF(...) /*printf(__VA_ARGS__)*/
 | |
| 
 | |
| /**
 | |
|  * \addtogroup uip
 | |
|  * @{
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * \file
 | |
|  * The uIP TCP/IP stack code.
 | |
|  * \author Adam Dunkels <adam@dunkels.com>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Copyright (c) 2001-2003, Adam Dunkels.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote
 | |
|  *    products derived from this software without specific prior
 | |
|  *    written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 | |
|  * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | |
|  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 | |
|  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 | |
|  * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 | |
|  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
|  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 | |
|  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  * This file is part of the uIP TCP/IP stack.
 | |
|  *
 | |
|  * $Id: uip.c,v 1.15 2008/10/15 08:08:32 adamdunkels Exp $
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * uIP is a small implementation of the IP, UDP and TCP protocols (as
 | |
|  * well as some basic ICMP stuff). The implementation couples the IP,
 | |
|  * UDP, TCP and the application layers very tightly. To keep the size
 | |
|  * of the compiled code down, this code frequently uses the goto
 | |
|  * statement. While it would be possible to break the uip_process()
 | |
|  * function into many smaller functions, this would increase the code
 | |
|  * size because of the overhead of parameter passing and the fact that
 | |
|  * the optimizer would not be as efficient.
 | |
|  *
 | |
|  * The principle is that we have a small buffer, called the uip_buf,
 | |
|  * in which the device driver puts an incoming packet. The TCP/IP
 | |
|  * stack parses the headers in the packet, and calls the
 | |
|  * application. If the remote host has sent data to the application,
 | |
|  * this data is present in the uip_buf and the application read the
 | |
|  * data from there. It is up to the application to put this data into
 | |
|  * a byte stream if needed. The application will not be fed with data
 | |
|  * that is out of sequence.
 | |
|  *
 | |
|  * If the application whishes to send data to the peer, it should put
 | |
|  * its data into the uip_buf. The uip_appdata pointer points to the
 | |
|  * first available byte. The TCP/IP stack will calculate the
 | |
|  * checksums, and fill in the necessary header fields and finally send
 | |
|  * the packet back to the peer.
 | |
| */
 | |
| 
 | |
| #include "uip.h"
 | |
| #include "uipopt.h"
 | |
| #include "uip_arp.h"
 | |
| 
 | |
| #if !UIP_CONF_IPV6 /* If UIP_CONF_IPV6 is defined, we compile the
 | |
| 		      uip6.c file instead of this one. Therefore
 | |
| 		      this #ifndef removes the entire compilation
 | |
| 		      output of the uip.c file */
 | |
| 
 | |
| 
 | |
| #if UIP_CONF_IPV6
 | |
| #include "net/uip-neighbor.h"
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| /*---------------------------------------------------------------------------*/
 | |
| /* Variable definitions. */
 | |
| 
 | |
| 
 | |
| /* The IP address of this host. If it is defined to be fixed (by
 | |
|    setting UIP_FIXEDADDR to 1 in uipopt.h), the address is set
 | |
|    here. Otherwise, the address */
 | |
| #if UIP_FIXEDADDR > 0
 | |
| const uip_ipaddr_t uip_hostaddr =
 | |
|   { UIP_IPADDR0, UIP_IPADDR1, UIP_IPADDR2, UIP_IPADDR3 };
 | |
| const uip_ipaddr_t uip_draddr =
 | |
|   { UIP_DRIPADDR0, UIP_DRIPADDR1, UIP_DRIPADDR2, UIP_DRIPADDR3 };
 | |
| const uip_ipaddr_t uip_netmask =
 | |
|   { UIP_NETMASK0, UIP_NETMASK1, UIP_NETMASK2, UIP_NETMASK3 };
 | |
| #else
 | |
| uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask;
 | |
| #endif /* UIP_FIXEDADDR */
 | |
| 
 | |
| const uip_ipaddr_t uip_broadcast_addr =
 | |
| #if UIP_CONF_IPV6
 | |
|   { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
 | |
|       0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
 | |
| #else /* UIP_CONF_IPV6 */
 | |
|   { { 0xff, 0xff, 0xff, 0xff } };
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| const uip_ipaddr_t uip_all_zeroes_addr = { { 0x0, /* rest is 0 */ } };
 | |
| 
 | |
| #if UIP_FIXEDETHADDR
 | |
| const struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0,
 | |
| 					  UIP_ETHADDR1,
 | |
| 					  UIP_ETHADDR2,
 | |
| 					  UIP_ETHADDR3,
 | |
| 					  UIP_ETHADDR4,
 | |
| 					  UIP_ETHADDR5}};
 | |
| #else
 | |
| struct uip_eth_addr uip_ethaddr = {{0,0,0,0,0,0}};
 | |
| #endif
 | |
| 
 | |
| #ifndef UIP_CONF_EXTERNAL_BUFFER
 | |
| u8_t uip_buf[UIP_BUFSIZE + 2];   /* The packet buffer that contains
 | |
| 				    incoming packets. */
 | |
| #endif /* UIP_CONF_EXTERNAL_BUFFER */
 | |
| 
 | |
| void *uip_appdata;               /* The uip_appdata pointer points to
 | |
| 				    application data. */
 | |
| void *uip_sappdata;              /* The uip_appdata pointer points to
 | |
| 				    the application data which is to
 | |
| 				    be sent. */
 | |
| #if UIP_URGDATA > 0
 | |
| void *uip_urgdata;               /* The uip_urgdata pointer points to
 | |
|    				    urgent data (out-of-band data), if
 | |
|    				    present. */
 | |
| u16_t uip_urglen, uip_surglen;
 | |
| #endif /* UIP_URGDATA > 0 */
 | |
| 
 | |
| u16_t uip_len, uip_slen;
 | |
|                              /* The uip_len is either 8 or 16 bits,
 | |
| 				depending on the maximum packet
 | |
| 				size. */
 | |
| 
 | |
| u8_t uip_flags;     /* The uip_flags variable is used for
 | |
| 				communication between the TCP/IP stack
 | |
| 				and the application program. */
 | |
| struct uip_conn *uip_conn;   /* uip_conn always points to the current
 | |
| 				connection. */
 | |
| 
 | |
| struct uip_conn uip_conns[UIP_CONNS];
 | |
|                              /* The uip_conns array holds all TCP
 | |
| 				connections. */
 | |
| u16_t uip_listenports[UIP_LISTENPORTS];
 | |
|                              /* The uip_listenports list all currently
 | |
| 				listening ports. */
 | |
| #if UIP_UDP
 | |
| struct uip_udp_conn *uip_udp_conn;
 | |
| struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
 | |
| #endif /* UIP_UDP */
 | |
| 
 | |
| static u16_t ipid;           /* Ths ipid variable is an increasing
 | |
| 				number that is used for the IP ID
 | |
| 				field. */
 | |
| 
 | |
| void uip_setipid(u16_t id) { ipid = id; }
 | |
| 
 | |
| static u8_t iss[4];          /* The iss variable is used for the TCP
 | |
| 				initial sequence number. */
 | |
| 
 | |
| #if UIP_ACTIVE_OPEN
 | |
| static u16_t lastport;       /* Keeps track of the last port used for
 | |
| 				a new connection. */
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| /* Temporary variables. */
 | |
| u8_t uip_acc32[4];
 | |
| static u8_t c, opt;
 | |
| static u16_t tmp16;
 | |
| 
 | |
| /* Structures and definitions. */
 | |
| #define TCP_FIN 0x01
 | |
| #define TCP_SYN 0x02
 | |
| #define TCP_RST 0x04
 | |
| #define TCP_PSH 0x08
 | |
| #define TCP_ACK 0x10
 | |
| #define TCP_URG 0x20
 | |
| #define TCP_CTL 0x3f
 | |
| 
 | |
| #define TCP_OPT_END     0   /* End of TCP options list */
 | |
| #define TCP_OPT_NOOP    1   /* "No-operation" TCP option */
 | |
| #define TCP_OPT_MSS     2   /* Maximum segment size TCP option */
 | |
| 
 | |
| #define TCP_OPT_MSS_LEN 4   /* Length of TCP MSS option. */
 | |
| 
 | |
| #define ICMP_ECHO_REPLY 0
 | |
| #define ICMP_ECHO       8
 | |
| 
 | |
| #define ICMP_DEST_UNREACHABLE        3
 | |
| #define ICMP_PORT_UNREACHABLE        3
 | |
| 
 | |
| #define ICMP6_ECHO_REPLY             129
 | |
| #define ICMP6_ECHO                   128
 | |
| #define ICMP6_NEIGHBOR_SOLICITATION  135
 | |
| #define ICMP6_NEIGHBOR_ADVERTISEMENT 136
 | |
| 
 | |
| #define ICMP6_FLAG_S (1 << 6)
 | |
| 
 | |
| #define ICMP6_OPTION_SOURCE_LINK_ADDRESS 1
 | |
| #define ICMP6_OPTION_TARGET_LINK_ADDRESS 2
 | |
| 
 | |
| 
 | |
| /* Macros. */
 | |
| #define BUF ((struct uip_tcpip_hdr *)&uip_buf[UIP_LLH_LEN])
 | |
| #define FBUF ((struct uip_tcpip_hdr *)&uip_reassbuf[0])
 | |
| #define ICMPBUF ((struct uip_icmpip_hdr *)&uip_buf[UIP_LLH_LEN])
 | |
| #define UDPBUF ((struct uip_udpip_hdr *)&uip_buf[UIP_LLH_LEN])
 | |
| 
 | |
| 
 | |
| #if UIP_STATISTICS == 1
 | |
| struct uip_stats uip_stat;
 | |
| #define UIP_STAT(s) s
 | |
| #else
 | |
| #define UIP_STAT(s)
 | |
| #endif /* UIP_STATISTICS == 1 */
 | |
| 
 | |
| #if UIP_LOGGING == 1
 | |
| #include <stdio.h>
 | |
| void uip_log(char *msg);
 | |
| #define UIP_LOG(m) uip_log(m)
 | |
| #else
 | |
| #define UIP_LOG(m)
 | |
| #endif /* UIP_LOGGING == 1 */
 | |
| 
 | |
| #if ! UIP_ARCH_ADD32
 | |
| void
 | |
| uip_add32(u8_t *op32, u16_t op16)
 | |
| {
 | |
|   uip_acc32[3] = op32[3] + (op16 & 0xff);
 | |
|   uip_acc32[2] = op32[2] + (op16 >> 8);
 | |
|   uip_acc32[1] = op32[1];
 | |
|   uip_acc32[0] = op32[0];
 | |
| 
 | |
|   if(uip_acc32[2] < (op16 >> 8)) {
 | |
|     ++uip_acc32[1];
 | |
|     if(uip_acc32[1] == 0) {
 | |
|       ++uip_acc32[0];
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   if(uip_acc32[3] < (op16 & 0xff)) {
 | |
|     ++uip_acc32[2];
 | |
|     if(uip_acc32[2] == 0) {
 | |
|       ++uip_acc32[1];
 | |
|       if(uip_acc32[1] == 0) {
 | |
| 	++uip_acc32[0];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #endif /* UIP_ARCH_ADD32 */
 | |
| 
 | |
| #if ! UIP_ARCH_CHKSUM
 | |
| /*---------------------------------------------------------------------------*/
 | |
| static u16_t
 | |
| chksum(u16_t sum, const u8_t *data, u16_t len)
 | |
| {
 | |
|   u16_t t;
 | |
|   const u8_t *dataptr;
 | |
|   const u8_t *last_byte;
 | |
| 
 | |
|   dataptr = data;
 | |
|   last_byte = data + len - 1;
 | |
| 
 | |
|   while(dataptr < last_byte) {	/* At least two more bytes */
 | |
|     t = (dataptr[0] << 8) + dataptr[1];
 | |
|     sum += t;
 | |
|     if(sum < t) {
 | |
|       sum++;		/* carry */
 | |
|     }
 | |
|     dataptr += 2;
 | |
|   }
 | |
| 
 | |
|   if(dataptr == last_byte) {
 | |
|     t = (dataptr[0] << 8) + 0;
 | |
|     sum += t;
 | |
|     if(sum < t) {
 | |
|       sum++;		/* carry */
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Return sum in host byte order. */
 | |
|   return sum;
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| u16_t
 | |
| uip_chksum(u16_t *data, u16_t len)
 | |
| {
 | |
|   return htons(chksum(0, (u8_t *)data, len));
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| #ifndef UIP_ARCH_IPCHKSUM
 | |
| u16_t
 | |
| uip_ipchksum(void)
 | |
| {
 | |
|   u16_t sum;
 | |
| 
 | |
|   sum = chksum(0, &uip_buf[UIP_LLH_LEN], UIP_IPH_LEN);
 | |
|   DEBUG_PRINTF("uip_ipchksum: sum 0x%04x\n", sum);
 | |
|   return (sum == 0) ? 0xffff : htons(sum);
 | |
| }
 | |
| #endif
 | |
| /*---------------------------------------------------------------------------*/
 | |
| static u16_t
 | |
| upper_layer_chksum(u8_t proto)
 | |
| {
 | |
|   u16_t upper_layer_len;
 | |
|   u16_t sum;
 | |
| 
 | |
| #if UIP_CONF_IPV6
 | |
|   upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]);
 | |
| #else /* UIP_CONF_IPV6 */
 | |
|   upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN;
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
|   /* First sum pseudo-header. */
 | |
| 
 | |
|   /* IP protocol and length fields. This addition cannot carry. */
 | |
|   sum = upper_layer_len + proto;
 | |
|   /* Sum IP source and destination addresses. */
 | |
|   sum = chksum(sum, (u8_t *)&BUF->srcipaddr, 2 * sizeof(uip_ipaddr_t));
 | |
| 
 | |
|   /* Sum TCP header and data. */
 | |
|   sum = chksum(sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN],
 | |
| 	       upper_layer_len);
 | |
| 
 | |
|   return (sum == 0) ? 0xffff : htons(sum);
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| #if UIP_CONF_IPV6
 | |
| u16_t
 | |
| uip_icmp6chksum(void)
 | |
| {
 | |
|   return upper_layer_chksum(UIP_PROTO_ICMP6);
 | |
| 
 | |
| }
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| /*---------------------------------------------------------------------------*/
 | |
| u16_t
 | |
| uip_tcpchksum(void)
 | |
| {
 | |
|   return upper_layer_chksum(UIP_PROTO_TCP);
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| #if UIP_UDP_CHECKSUMS
 | |
| u16_t
 | |
| uip_udpchksum(void)
 | |
| {
 | |
|   return upper_layer_chksum(UIP_PROTO_UDP);
 | |
| }
 | |
| #endif /* UIP_UDP_CHECKSUMS */
 | |
| #endif /* UIP_ARCH_CHKSUM */
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void
 | |
| uip_init(void)
 | |
| {
 | |
|   for(c = 0; c < UIP_LISTENPORTS; ++c) {
 | |
|     uip_listenports[c] = 0;
 | |
|   }
 | |
|   for(c = 0; c < UIP_CONNS; ++c) {
 | |
|     uip_conns[c].tcpstateflags = UIP_CLOSED;
 | |
|   }
 | |
| #if UIP_ACTIVE_OPEN
 | |
|   lastport = 1024;
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| #if UIP_UDP
 | |
|   for(c = 0; c < UIP_UDP_CONNS; ++c) {
 | |
|     uip_udp_conns[c].lport = 0;
 | |
|   }
 | |
| #endif /* UIP_UDP */
 | |
| 
 | |
| 
 | |
|   /* IPv4 initialization. */
 | |
| #if UIP_FIXEDADDR == 0
 | |
|   /*  uip_hostaddr[0] = uip_hostaddr[1] = 0;*/
 | |
| #endif /* UIP_FIXEDADDR */
 | |
| 
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| #if UIP_ACTIVE_OPEN
 | |
| struct uip_conn *
 | |
| uip_connect(uip_ipaddr_t *ripaddr, u16_t rport)
 | |
| {
 | |
|   register struct uip_conn *conn, *cconn;
 | |
| 
 | |
|   /* Find an unused local port. */
 | |
|  again:
 | |
|   ++lastport;
 | |
| 
 | |
|   if(lastport >= 32000) {
 | |
|     lastport = 4096;
 | |
|   }
 | |
| 
 | |
|   /* Check if this port is already in use, and if so try to find
 | |
|      another one. */
 | |
|   for(c = 0; c < UIP_CONNS; ++c) {
 | |
|     conn = &uip_conns[c];
 | |
|     if(conn->tcpstateflags != UIP_CLOSED &&
 | |
|        conn->lport == htons(lastport)) {
 | |
|       goto again;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   conn = 0;
 | |
|   for(c = 0; c < UIP_CONNS; ++c) {
 | |
|     cconn = &uip_conns[c];
 | |
|     if(cconn->tcpstateflags == UIP_CLOSED) {
 | |
|       conn = cconn;
 | |
|       break;
 | |
|     }
 | |
|     if(cconn->tcpstateflags == UIP_TIME_WAIT) {
 | |
|       if(conn == 0 ||
 | |
| 	 cconn->timer > conn->timer) {
 | |
| 	conn = cconn;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(conn == 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   conn->tcpstateflags = UIP_SYN_SENT;
 | |
| 
 | |
|   conn->snd_nxt[0] = iss[0];
 | |
|   conn->snd_nxt[1] = iss[1];
 | |
|   conn->snd_nxt[2] = iss[2];
 | |
|   conn->snd_nxt[3] = iss[3];
 | |
| 
 | |
|   conn->initialmss = conn->mss = UIP_TCP_MSS;
 | |
| 
 | |
|   conn->len = 1;   /* TCP length of the SYN is one. */
 | |
|   conn->nrtx = 0;
 | |
|   conn->timer = 1; /* Send the SYN next time around. */
 | |
|   conn->rto = UIP_RTO;
 | |
|   conn->sa = 0;
 | |
|   conn->sv = 16;   /* Initial value of the RTT variance. */
 | |
|   conn->lport = htons(lastport);
 | |
|   conn->rport = rport;
 | |
|   uip_ipaddr_copy(&conn->ripaddr, ripaddr);
 | |
| 
 | |
|   return conn;
 | |
| }
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| /*---------------------------------------------------------------------------*/
 | |
| #if UIP_UDP
 | |
| struct uip_udp_conn *
 | |
| uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport)
 | |
| {
 | |
|   register struct uip_udp_conn *conn;
 | |
| 
 | |
|   /* Find an unused local port. */
 | |
|  again:
 | |
|   ++lastport;
 | |
| 
 | |
|   if(lastport >= 32000) {
 | |
|     lastport = 4096;
 | |
|   }
 | |
| 
 | |
|   for(c = 0; c < UIP_UDP_CONNS; ++c) {
 | |
|     if(uip_udp_conns[c].lport == htons(lastport)) {
 | |
|       goto again;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   conn = 0;
 | |
|   for(c = 0; c < UIP_UDP_CONNS; ++c) {
 | |
|     if(uip_udp_conns[c].lport == 0) {
 | |
|       conn = &uip_udp_conns[c];
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(conn == 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   conn->lport = HTONS(lastport);
 | |
|   conn->rport = rport;
 | |
|   if(ripaddr == NULL) {
 | |
|     memset(&conn->ripaddr, 0, sizeof(uip_ipaddr_t));
 | |
|   } else {
 | |
|     uip_ipaddr_copy(&conn->ripaddr, ripaddr);
 | |
|   }
 | |
|   conn->ttl = UIP_TTL;
 | |
| 
 | |
|   return conn;
 | |
| }
 | |
| #endif /* UIP_UDP */
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void
 | |
| uip_unlisten(u16_t port)
 | |
| {
 | |
|   for(c = 0; c < UIP_LISTENPORTS; ++c) {
 | |
|     if(uip_listenports[c] == port) {
 | |
|       uip_listenports[c] = 0;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void
 | |
| uip_listen(u16_t port)
 | |
| {
 | |
|   for(c = 0; c < UIP_LISTENPORTS; ++c) {
 | |
|     if(uip_listenports[c] == 0) {
 | |
|       uip_listenports[c] = port;
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| /* XXX: IP fragment reassembly: not well-tested. */
 | |
| 
 | |
| #if UIP_REASSEMBLY && !UIP_CONF_IPV6
 | |
| #define UIP_REASS_BUFSIZE (UIP_BUFSIZE - UIP_LLH_LEN)
 | |
| static u8_t uip_reassbuf[UIP_REASS_BUFSIZE];
 | |
| static u8_t uip_reassbitmap[UIP_REASS_BUFSIZE / (8 * 8)];
 | |
| static const u8_t bitmap_bits[8] = {0xff, 0x7f, 0x3f, 0x1f,
 | |
| 				    0x0f, 0x07, 0x03, 0x01};
 | |
| static u16_t uip_reasslen;
 | |
| static u8_t uip_reassflags;
 | |
| #define UIP_REASS_FLAG_LASTFRAG 0x01
 | |
| static u8_t uip_reasstmr;
 | |
| 
 | |
| #define IP_MF   0x20
 | |
| 
 | |
| static u8_t
 | |
| uip_reass(void)
 | |
| {
 | |
|   u16_t offset, len;
 | |
|   u16_t i;
 | |
| 
 | |
|   /* If ip_reasstmr is zero, no packet is present in the buffer, so we
 | |
|      write the IP header of the fragment into the reassembly
 | |
|      buffer. The timer is updated with the maximum age. */
 | |
|   if(uip_reasstmr == 0) {
 | |
|     memcpy(uip_reassbuf, &BUF->vhl, UIP_IPH_LEN);
 | |
|     uip_reasstmr = UIP_REASS_MAXAGE;
 | |
|     uip_reassflags = 0;
 | |
|     /* Clear the bitmap. */
 | |
|     memset(uip_reassbitmap, 0, sizeof(uip_reassbitmap));
 | |
|   }
 | |
| 
 | |
|   /* Check if the incoming fragment matches the one currently present
 | |
|      in the reasembly buffer. If so, we proceed with copying the
 | |
|      fragment into the buffer. */
 | |
|   if(BUF->srcipaddr[0] == FBUF->srcipaddr[0] &&
 | |
|      BUF->srcipaddr[1] == FBUF->srcipaddr[1] &&
 | |
|      BUF->destipaddr[0] == FBUF->destipaddr[0] &&
 | |
|      BUF->destipaddr[1] == FBUF->destipaddr[1] &&
 | |
|      BUF->ipid[0] == FBUF->ipid[0] &&
 | |
|      BUF->ipid[1] == FBUF->ipid[1]) {
 | |
| 
 | |
|     len = (BUF->len[0] << 8) + BUF->len[1] - (BUF->vhl & 0x0f) * 4;
 | |
|     offset = (((BUF->ipoffset[0] & 0x3f) << 8) + BUF->ipoffset[1]) * 8;
 | |
| 
 | |
|     /* If the offset or the offset + fragment length overflows the
 | |
|        reassembly buffer, we discard the entire packet. */
 | |
|     if(offset > UIP_REASS_BUFSIZE ||
 | |
|        offset + len > UIP_REASS_BUFSIZE) {
 | |
|       uip_reasstmr = 0;
 | |
|       goto nullreturn;
 | |
|     }
 | |
| 
 | |
|     /* Copy the fragment into the reassembly buffer, at the right
 | |
|        offset. */
 | |
|     memcpy(&uip_reassbuf[UIP_IPH_LEN + offset],
 | |
| 	   (char *)BUF + (int)((BUF->vhl & 0x0f) * 4),
 | |
| 	   len);
 | |
| 
 | |
|     /* Update the bitmap. */
 | |
|     if(offset / (8 * 8) == (offset + len) / (8 * 8)) {
 | |
|       /* If the two endpoints are in the same byte, we only update
 | |
| 	 that byte. */
 | |
| 
 | |
|       uip_reassbitmap[offset / (8 * 8)] |=
 | |
| 	     bitmap_bits[(offset / 8 ) & 7] &
 | |
| 	     ~bitmap_bits[((offset + len) / 8 ) & 7];
 | |
|     } else {
 | |
|       /* If the two endpoints are in different bytes, we update the
 | |
| 	 bytes in the endpoints and fill the stuff in-between with
 | |
| 	 0xff. */
 | |
|       uip_reassbitmap[offset / (8 * 8)] |=
 | |
| 	bitmap_bits[(offset / 8 ) & 7];
 | |
|       for(i = 1 + offset / (8 * 8); i < (offset + len) / (8 * 8); ++i) {
 | |
| 	uip_reassbitmap[i] = 0xff;
 | |
|       }
 | |
|       uip_reassbitmap[(offset + len) / (8 * 8)] |=
 | |
| 	~bitmap_bits[((offset + len) / 8 ) & 7];
 | |
|     }
 | |
| 
 | |
|     /* If this fragment has the More Fragments flag set to zero, we
 | |
|        know that this is the last fragment, so we can calculate the
 | |
|        size of the entire packet. We also set the
 | |
|        IP_REASS_FLAG_LASTFRAG flag to indicate that we have received
 | |
|        the final fragment. */
 | |
| 
 | |
|     if((BUF->ipoffset[0] & IP_MF) == 0) {
 | |
|       uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
 | |
|       uip_reasslen = offset + len;
 | |
|     }
 | |
| 
 | |
|     /* Finally, we check if we have a full packet in the buffer. We do
 | |
|        this by checking if we have the last fragment and if all bits
 | |
|        in the bitmap are set. */
 | |
|     if(uip_reassflags & UIP_REASS_FLAG_LASTFRAG) {
 | |
|       /* Check all bytes up to and including all but the last byte in
 | |
| 	 the bitmap. */
 | |
|       for(i = 0; i < uip_reasslen / (8 * 8) - 1; ++i) {
 | |
| 	if(uip_reassbitmap[i] != 0xff) {
 | |
| 	  goto nullreturn;
 | |
| 	}
 | |
|       }
 | |
|       /* Check the last byte in the bitmap. It should contain just the
 | |
| 	 right amount of bits. */
 | |
|       if(uip_reassbitmap[uip_reasslen / (8 * 8)] !=
 | |
| 	 (u8_t)~bitmap_bits[uip_reasslen / 8 & 7]) {
 | |
| 	goto nullreturn;
 | |
|       }
 | |
| 
 | |
|       /* If we have come this far, we have a full packet in the
 | |
| 	 buffer, so we allocate a pbuf and copy the packet into it. We
 | |
| 	 also reset the timer. */
 | |
|       uip_reasstmr = 0;
 | |
|       memcpy(BUF, FBUF, uip_reasslen);
 | |
| 
 | |
|       /* Pretend to be a "normal" (i.e., not fragmented) IP packet
 | |
| 	 from now on. */
 | |
|       BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
 | |
|       BUF->len[0] = uip_reasslen >> 8;
 | |
|       BUF->len[1] = uip_reasslen & 0xff;
 | |
|       BUF->ipchksum = 0;
 | |
|       BUF->ipchksum = ~(uip_ipchksum());
 | |
| 
 | |
|       return uip_reasslen;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  nullreturn:
 | |
|   return 0;
 | |
| }
 | |
| #endif /* UIP_REASSEMBLY */
 | |
| /*---------------------------------------------------------------------------*/
 | |
| static void
 | |
| uip_add_rcv_nxt(u16_t n)
 | |
| {
 | |
|   uip_add32(uip_conn->rcv_nxt, n);
 | |
|   uip_conn->rcv_nxt[0] = uip_acc32[0];
 | |
|   uip_conn->rcv_nxt[1] = uip_acc32[1];
 | |
|   uip_conn->rcv_nxt[2] = uip_acc32[2];
 | |
|   uip_conn->rcv_nxt[3] = uip_acc32[3];
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void
 | |
| uip_process(u8_t flag)
 | |
| {
 | |
|   register struct uip_conn *uip_connr = uip_conn;
 | |
| 
 | |
| #if UIP_UDP
 | |
|   if(flag == UIP_UDP_SEND_CONN) {
 | |
|     goto udp_send;
 | |
|   }
 | |
| #endif /* UIP_UDP */
 | |
| 
 | |
|   uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN];
 | |
| 
 | |
|   /* Check if we were invoked because of a poll request for a
 | |
|      particular connection. */
 | |
|   if(flag == UIP_POLL_REQUEST) {
 | |
|     if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED &&
 | |
|        !uip_outstanding(uip_connr)) {
 | |
| 	uip_len = uip_slen = 0;
 | |
| 	uip_flags = UIP_POLL;
 | |
| 	UIP_APPCALL();
 | |
| 	goto appsend;
 | |
|     }
 | |
|     goto drop;
 | |
| 
 | |
|     /* Check if we were invoked because of the periodic timer firing. */
 | |
|   } else if(flag == UIP_TIMER) {
 | |
| #if UIP_REASSEMBLY
 | |
|     if(uip_reasstmr != 0) {
 | |
|       --uip_reasstmr;
 | |
|     }
 | |
| #endif /* UIP_REASSEMBLY */
 | |
|     /* Increase the initial sequence number. */
 | |
|     if(++iss[3] == 0) {
 | |
|       if(++iss[2] == 0) {
 | |
| 	if(++iss[1] == 0) {
 | |
| 	  ++iss[0];
 | |
| 	}
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /* Reset the length variables. */
 | |
|     uip_len = 0;
 | |
|     uip_slen = 0;
 | |
| 
 | |
|     /* Check if the connection is in a state in which we simply wait
 | |
|        for the connection to time out. If so, we increase the
 | |
|        connection's timer and remove the connection if it times
 | |
|        out. */
 | |
|     if(uip_connr->tcpstateflags == UIP_TIME_WAIT ||
 | |
|        uip_connr->tcpstateflags == UIP_FIN_WAIT_2) {
 | |
|       ++(uip_connr->timer);
 | |
|       if(uip_connr->timer == UIP_TIME_WAIT_TIMEOUT) {
 | |
| 	uip_connr->tcpstateflags = UIP_CLOSED;
 | |
|       }
 | |
|     } else if(uip_connr->tcpstateflags != UIP_CLOSED) {
 | |
|       /* If the connection has outstanding data, we increase the
 | |
| 	 connection's timer and see if it has reached the RTO value
 | |
| 	 in which case we retransmit. */
 | |
|       if(uip_outstanding(uip_connr)) {
 | |
| 	if(uip_connr->timer-- == 0) {
 | |
| 	  if(uip_connr->nrtx == UIP_MAXRTX ||
 | |
| 	     ((uip_connr->tcpstateflags == UIP_SYN_SENT ||
 | |
| 	       uip_connr->tcpstateflags == UIP_SYN_RCVD) &&
 | |
| 	      uip_connr->nrtx == UIP_MAXSYNRTX)) {
 | |
| 	    uip_connr->tcpstateflags = UIP_CLOSED;
 | |
| 
 | |
| 	    /* We call UIP_APPCALL() with uip_flags set to
 | |
| 	       UIP_TIMEDOUT to inform the application that the
 | |
| 	       connection has timed out. */
 | |
| 	    uip_flags = UIP_TIMEDOUT;
 | |
| 	    UIP_APPCALL();
 | |
| 
 | |
| 	    /* We also send a reset packet to the remote host. */
 | |
| 	    BUF->flags = TCP_RST | TCP_ACK;
 | |
| 	    goto tcp_send_nodata;
 | |
| 	  }
 | |
| 
 | |
| 	  /* Exponential back-off. */
 | |
| 	  uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4?
 | |
| 					 4:
 | |
| 					 uip_connr->nrtx);
 | |
| 	  ++(uip_connr->nrtx);
 | |
| 
 | |
| 	  /* Ok, so we need to retransmit. We do this differently
 | |
| 	     depending on which state we are in. In ESTABLISHED, we
 | |
| 	     call upon the application so that it may prepare the
 | |
| 	     data for the retransmit. In SYN_RCVD, we resend the
 | |
| 	     SYNACK that we sent earlier and in LAST_ACK we have to
 | |
| 	     retransmit our FINACK. */
 | |
| 	  UIP_STAT(++uip_stat.tcp.rexmit);
 | |
| 	  switch(uip_connr->tcpstateflags & UIP_TS_MASK) {
 | |
| 	  case UIP_SYN_RCVD:
 | |
| 	    /* In the SYN_RCVD state, we should retransmit our
 | |
|                SYNACK. */
 | |
| 	    goto tcp_send_synack;
 | |
| 
 | |
| #if UIP_ACTIVE_OPEN
 | |
| 	  case UIP_SYN_SENT:
 | |
| 	    /* In the SYN_SENT state, we retransmit out SYN. */
 | |
| 	    BUF->flags = 0;
 | |
| 	    goto tcp_send_syn;
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
| 	  case UIP_ESTABLISHED:
 | |
| 	    /* In the ESTABLISHED state, we call upon the application
 | |
|                to do the actual retransmit after which we jump into
 | |
|                the code for sending out the packet (the apprexmit
 | |
|                label). */
 | |
| 	    uip_flags = UIP_REXMIT;
 | |
| 	    UIP_APPCALL();
 | |
| 	    goto apprexmit;
 | |
| 
 | |
| 	  case UIP_FIN_WAIT_1:
 | |
| 	  case UIP_CLOSING:
 | |
| 	  case UIP_LAST_ACK:
 | |
| 	    /* In all these states we should retransmit a FINACK. */
 | |
| 	    goto tcp_send_finack;
 | |
| 
 | |
| 	  }
 | |
| 	}
 | |
|       } else if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) {
 | |
| 	/* If there was no need for a retransmission, we poll the
 | |
|            application for new data. */
 | |
| 	uip_len = uip_slen = 0;
 | |
| 	uip_flags = UIP_POLL;
 | |
| 	UIP_APPCALL();
 | |
| 	goto appsend;
 | |
|       }
 | |
|     }
 | |
|     goto drop;
 | |
|   }
 | |
| #if UIP_UDP
 | |
|   if(flag == UIP_UDP_TIMER) {
 | |
|     if(uip_udp_conn->lport != 0) {
 | |
|       uip_conn = NULL;
 | |
|       uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
 | |
|       uip_len = uip_slen = 0;
 | |
|       uip_flags = UIP_POLL;
 | |
|       UIP_UDP_APPCALL();
 | |
|       goto udp_send;
 | |
|     } else {
 | |
|       goto drop;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   /* This is where the input processing starts. */
 | |
|   UIP_STAT(++uip_stat.ip.recv);
 | |
| 
 | |
|   /* Start of IP input header processing code. */
 | |
| 
 | |
| #if UIP_CONF_IPV6
 | |
|   /* Check validity of the IP header. */
 | |
|   if((BUF->vtc & 0xf0) != 0x60)  { /* IP version and header length. */
 | |
|     UIP_STAT(++uip_stat.ip.drop);
 | |
|     UIP_STAT(++uip_stat.ip.vhlerr);
 | |
|     UIP_LOG("ipv6: invalid version.");
 | |
|     goto drop;
 | |
|   }
 | |
| #else /* UIP_CONF_IPV6 */
 | |
|   /* Check validity of the IP header. */
 | |
|   if(BUF->vhl != 0x45)  { /* IP version and header length. */
 | |
|     UIP_STAT(++uip_stat.ip.drop);
 | |
|     UIP_STAT(++uip_stat.ip.vhlerr);
 | |
|     UIP_LOG("ip: invalid version or header length.");
 | |
|     goto drop;
 | |
|   }
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
|   /* Check the size of the packet. If the size reported to us in
 | |
|      uip_len is smaller the size reported in the IP header, we assume
 | |
|      that the packet has been corrupted in transit. If the size of
 | |
|      uip_len is larger than the size reported in the IP packet header,
 | |
|      the packet has been padded and we set uip_len to the correct
 | |
|      value.. */
 | |
| 
 | |
|   if((BUF->len[0] << 8) + BUF->len[1] <= uip_len) {
 | |
|     uip_len = (BUF->len[0] << 8) + BUF->len[1];
 | |
| #if UIP_CONF_IPV6
 | |
|     uip_len += 40; /* The length reported in the IPv6 header is the
 | |
| 		      length of the payload that follows the
 | |
| 		      header. However, uIP uses the uip_len variable
 | |
| 		      for holding the size of the entire packet,
 | |
| 		      including the IP header. For IPv4 this is not a
 | |
| 		      problem as the length field in the IPv4 header
 | |
| 		      contains the length of the entire packet. But
 | |
| 		      for IPv6 we need to add the size of the IPv6
 | |
| 		      header (40 bytes). */
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
|   } else {
 | |
|     UIP_LOG("ip: packet shorter than reported in IP header.");
 | |
|     goto drop;
 | |
|   }
 | |
| 
 | |
| #if !UIP_CONF_IPV6
 | |
|   /* Check the fragment flag. */
 | |
|   if((BUF->ipoffset[0] & 0x3f) != 0 ||
 | |
|      BUF->ipoffset[1] != 0) {
 | |
| #if UIP_REASSEMBLY
 | |
|     uip_len = uip_reass();
 | |
|     if(uip_len == 0) {
 | |
|       goto drop;
 | |
|     }
 | |
| #else /* UIP_REASSEMBLY */
 | |
|     UIP_STAT(++uip_stat.ip.drop);
 | |
|     UIP_STAT(++uip_stat.ip.fragerr);
 | |
|     UIP_LOG("ip: fragment dropped.");
 | |
|     goto drop;
 | |
| #endif /* UIP_REASSEMBLY */
 | |
|   }
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
|   if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
 | |
|     /* If we are configured to use ping IP address configuration and
 | |
|        hasn't been assigned an IP address yet, we accept all ICMP
 | |
|        packets. */
 | |
| #if UIP_PINGADDRCONF && !UIP_CONF_IPV6
 | |
|     if(BUF->proto == UIP_PROTO_ICMP) {
 | |
|       UIP_LOG("ip: possible ping config packet received.");
 | |
|       goto icmp_input;
 | |
|     } else {
 | |
|       UIP_LOG("ip: packet dropped since no address assigned.");
 | |
|       goto drop;
 | |
|     }
 | |
| #endif /* UIP_PINGADDRCONF */
 | |
| 
 | |
|   } else {
 | |
|     /* If IP broadcast support is configured, we check for a broadcast
 | |
|        UDP packet, which may be destined to us. */
 | |
| #if UIP_BROADCAST
 | |
|     DEBUG_PRINTF("UDP IP checksum 0x%04x\n", uip_ipchksum());
 | |
|     if(BUF->proto == UIP_PROTO_UDP &&
 | |
|        uip_ipaddr_cmp(&BUF->destipaddr, &uip_broadcast_addr))
 | |
| 	{
 | |
| 		if (uip_ipaddr_cmp(&BUF->srcipaddr, &uip_all_zeroes_addr))
 | |
| 		  uip_ipaddr_copy(&BUF->srcipaddr, &uip_broadcast_addr);
 | |
| 
 | |
| 		goto udp_input;
 | |
|     }
 | |
| #endif /* UIP_BROADCAST */
 | |
| 
 | |
|     /* Check if the packet is destined for our IP address. */
 | |
| #if !UIP_CONF_IPV6
 | |
|     if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr)) {
 | |
|       UIP_STAT(++uip_stat.ip.drop);
 | |
|       goto drop;
 | |
|     }
 | |
| #else /* UIP_CONF_IPV6 */
 | |
|     /* For IPv6, packet reception is a little trickier as we need to
 | |
|        make sure that we listen to certain multicast addresses (all
 | |
|        hosts multicast address, and the solicited-node multicast
 | |
|        address) as well. However, we will cheat here and accept all
 | |
|        multicast packets that are sent to the ff02::/16 addresses. */
 | |
|     if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) &&
 | |
|        BUF->destipaddr.u16[0] != HTONS(0xff02)) {
 | |
|       UIP_STAT(++uip_stat.ip.drop);
 | |
|       goto drop;
 | |
|     }
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
|   }
 | |
| 
 | |
| #if !UIP_CONF_IPV6
 | |
|   if(uip_ipchksum() != 0xffff) { /* Compute and check the IP header
 | |
| 				    checksum. */
 | |
|     UIP_STAT(++uip_stat.ip.drop);
 | |
|     UIP_STAT(++uip_stat.ip.chkerr);
 | |
|     UIP_LOG("ip: bad checksum.");
 | |
|     goto drop;
 | |
|   }
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
|   if(BUF->proto == UIP_PROTO_TCP) { /* Check for TCP packet. If so,
 | |
| 				       proceed with TCP input
 | |
| 				       processing. */
 | |
|     goto tcp_input;
 | |
|   }
 | |
| 
 | |
| #if UIP_UDP
 | |
|   if(BUF->proto == UIP_PROTO_UDP) {
 | |
|     goto udp_input;
 | |
|   }
 | |
| #endif /* UIP_UDP */
 | |
| 
 | |
| #if !UIP_CONF_IPV6
 | |
|   /* ICMPv4 processing code follows. */
 | |
|   if(BUF->proto != UIP_PROTO_ICMP) { /* We only allow ICMP packets from
 | |
| 					here. */
 | |
|     UIP_STAT(++uip_stat.ip.drop);
 | |
|     UIP_STAT(++uip_stat.ip.protoerr);
 | |
|     UIP_LOG("ip: neither tcp nor icmp.");
 | |
|     goto drop;
 | |
|   }
 | |
| 
 | |
| #if UIP_PINGADDRCONF
 | |
|  icmp_input:
 | |
| #endif /* UIP_PINGADDRCONF */
 | |
|   UIP_STAT(++uip_stat.icmp.recv);
 | |
| 
 | |
|   /* ICMP echo (i.e., ping) processing. This is simple, we only change
 | |
|      the ICMP type from ECHO to ECHO_REPLY and adjust the ICMP
 | |
|      checksum before we return the packet. */
 | |
|   if(ICMPBUF->type != ICMP_ECHO) {
 | |
|     UIP_STAT(++uip_stat.icmp.drop);
 | |
|     UIP_STAT(++uip_stat.icmp.typeerr);
 | |
|     UIP_LOG("icmp: not icmp echo.");
 | |
|     goto drop;
 | |
|   }
 | |
| 
 | |
|   /* If we are configured to use ping IP address assignment, we use
 | |
|      the destination IP address of this ping packet and assign it to
 | |
|      yourself. */
 | |
| #if UIP_PINGADDRCONF
 | |
|   if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
 | |
|     uip_hostaddr = BUF->destipaddr;
 | |
|   }
 | |
| #endif /* UIP_PINGADDRCONF */
 | |
| 
 | |
|   ICMPBUF->type = ICMP_ECHO_REPLY;
 | |
| 
 | |
|   if(ICMPBUF->icmpchksum >= HTONS(0xffff - (ICMP_ECHO << 8))) {
 | |
|     ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8) + 1;
 | |
|   } else {
 | |
|     ICMPBUF->icmpchksum += HTONS(ICMP_ECHO << 8);
 | |
|   }
 | |
| 
 | |
|   /* Swap IP addresses. */
 | |
|   uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
 | |
|   uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
 | |
| 
 | |
|   UIP_STAT(++uip_stat.icmp.sent);
 | |
|   BUF->ttl = UIP_TTL;
 | |
|   goto ip_send_nolen;
 | |
| 
 | |
|   /* End of IPv4 input header processing code. */
 | |
| #else /* !UIP_CONF_IPV6 */
 | |
| 
 | |
|   /* This is IPv6 ICMPv6 processing code. */
 | |
|   DEBUG_PRINTF("icmp6_input: length %d\n", uip_len);
 | |
| 
 | |
|   if(BUF->proto != UIP_PROTO_ICMP6) { /* We only allow ICMPv6 packets from
 | |
| 					 here. */
 | |
|     UIP_STAT(++uip_stat.ip.drop);
 | |
|     UIP_STAT(++uip_stat.ip.protoerr);
 | |
|     UIP_LOG("ip: neither tcp nor icmp6.");
 | |
|     goto drop;
 | |
|   }
 | |
| 
 | |
|   UIP_STAT(++uip_stat.icmp.recv);
 | |
| 
 | |
|   /* If we get a neighbor solicitation for our address we should send
 | |
|      a neighbor advertisement message back. */
 | |
|   if(ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION) {
 | |
|     if(uip_ipaddr_cmp(&ICMPBUF->icmp6data, &uip_hostaddr)) {
 | |
| 
 | |
|       if(ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS) {
 | |
| 	/* Save the sender's address in our neighbor list. */
 | |
| 	uip_neighbor_add(&ICMPBUF->srcipaddr, &(ICMPBUF->options[2]));
 | |
|       }
 | |
| 
 | |
|       /* We should now send a neighbor advertisement back to where the
 | |
| 	 neighbor solicitation came from. */
 | |
|       ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT;
 | |
|       ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */
 | |
| 
 | |
|       ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0;
 | |
| 
 | |
|       uip_ipaddr_copy(&ICMPBUF->destipaddr, &ICMPBUF->srcipaddr);
 | |
|       uip_ipaddr_copy(&ICMPBUF->srcipaddr, &uip_hostaddr);
 | |
|       ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS;
 | |
|       ICMPBUF->options[1] = 1;  /* Options length, 1 = 8 bytes. */
 | |
|       memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr));
 | |
|       ICMPBUF->icmpchksum = 0;
 | |
|       ICMPBUF->icmpchksum = ~uip_icmp6chksum();
 | |
| 
 | |
|       goto send;
 | |
| 
 | |
|     }
 | |
|     goto drop;
 | |
|   } else if(ICMPBUF->type == ICMP6_ECHO) {
 | |
|     /* ICMP echo (i.e., ping) processing. This is simple, we only
 | |
|        change the ICMP type from ECHO to ECHO_REPLY and update the
 | |
|        ICMP checksum before we return the packet. */
 | |
| 
 | |
|     ICMPBUF->type = ICMP6_ECHO_REPLY;
 | |
| 
 | |
|     uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
 | |
|     uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
 | |
|     ICMPBUF->icmpchksum = 0;
 | |
|     ICMPBUF->icmpchksum = ~uip_icmp6chksum();
 | |
| 
 | |
|     UIP_STAT(++uip_stat.icmp.sent);
 | |
|     goto send;
 | |
|   } else {
 | |
|     DEBUG_PRINTF("Unknown icmp6 message type %d\n", ICMPBUF->type);
 | |
|     UIP_STAT(++uip_stat.icmp.drop);
 | |
|     UIP_STAT(++uip_stat.icmp.typeerr);
 | |
|     UIP_LOG("icmp: unknown ICMP message.");
 | |
|     goto drop;
 | |
|   }
 | |
| 
 | |
|   /* End of IPv6 ICMP processing. */
 | |
| 
 | |
| #endif /* !UIP_CONF_IPV6 */
 | |
| 
 | |
| #if UIP_UDP
 | |
|   /* UDP input processing. */
 | |
|  udp_input:
 | |
|   /* UDP processing is really just a hack. We don't do anything to the
 | |
|      UDP/IP headers, but let the UDP application do all the hard
 | |
|      work. If the application sets uip_slen, it has a packet to
 | |
|      send. */
 | |
| #if UIP_UDP_CHECKSUMS
 | |
|   uip_len = uip_len - UIP_IPUDPH_LEN;
 | |
|   uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
 | |
|   if(UDPBUF->udpchksum != 0 && uip_udpchksum() != 0xffff) {
 | |
|     UIP_STAT(++uip_stat.udp.drop);
 | |
|     UIP_STAT(++uip_stat.udp.chkerr);
 | |
|     UIP_LOG("udp: bad checksum.");
 | |
|     goto drop;
 | |
|   }
 | |
| #else /* UIP_UDP_CHECKSUMS */
 | |
|   uip_len = uip_len - UIP_IPUDPH_LEN;
 | |
| #endif /* UIP_UDP_CHECKSUMS */
 | |
| 
 | |
|   /* Demultiplex this UDP packet between the UDP "connections". */
 | |
|   for(uip_udp_conn = &uip_udp_conns[0];
 | |
|       uip_udp_conn < &uip_udp_conns[UIP_UDP_CONNS];
 | |
|       ++uip_udp_conn) {
 | |
|     /* If the local UDP port is non-zero, the connection is considered
 | |
|        to be used. If so, the local port number is checked against the
 | |
|        destination port number in the received packet. If the two port
 | |
|        numbers match, the remote port number is checked if the
 | |
|        connection is bound to a remote port. Finally, if the
 | |
|        connection is bound to a remote IP address, the source IP
 | |
|        address of the packet is checked. */
 | |
|     if(uip_udp_conn->lport != 0 &&
 | |
|        UDPBUF->destport == uip_udp_conn->lport &&
 | |
|        (uip_udp_conn->rport == 0 ||
 | |
|         UDPBUF->srcport == uip_udp_conn->rport) &&
 | |
|        (uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_all_zeroes_addr) ||
 | |
| 	uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_broadcast_addr) ||
 | |
| 	uip_ipaddr_cmp(&BUF->srcipaddr, &uip_udp_conn->ripaddr))) {
 | |
|       goto udp_found;
 | |
|     }
 | |
|   }
 | |
|   UIP_LOG("udp: no matching connection found");
 | |
| #if UIP_CONF_ICMP_DEST_UNREACH && !UIP_CONF_IPV6
 | |
|   /* Copy fields from packet header into payload of this ICMP packet. */
 | |
|   memcpy(&(ICMPBUF->payload[0]), ICMPBUF, UIP_IPH_LEN + 8);
 | |
| 
 | |
|   /* Set the ICMP type and code. */
 | |
|   ICMPBUF->type = ICMP_DEST_UNREACHABLE;
 | |
|   ICMPBUF->icode = ICMP_PORT_UNREACHABLE;
 | |
| 
 | |
|   /* Calculate the ICMP checksum. */
 | |
|   ICMPBUF->icmpchksum = 0;
 | |
|   ICMPBUF->icmpchksum = ~uip_chksum((u16_t *)&(ICMPBUF->type), 36);
 | |
| 
 | |
|   /* Set the IP destination address to be the source address of the
 | |
|      original packet. */
 | |
|   uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
 | |
| 
 | |
|   /* Set our IP address as the source address. */
 | |
|   uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
 | |
| 
 | |
|   /* The size of the ICMP destination unreachable packet is 36 + the
 | |
|      size of the IP header (20) = 56. */
 | |
|   uip_len = 36 + UIP_IPH_LEN;
 | |
|   ICMPBUF->len[0] = 0;
 | |
|   ICMPBUF->len[1] = (u8_t)uip_len;
 | |
|   ICMPBUF->ttl = UIP_TTL;
 | |
|   ICMPBUF->proto = UIP_PROTO_ICMP;
 | |
| 
 | |
|   goto ip_send_nolen;
 | |
| #else /* UIP_CONF_ICMP_DEST_UNREACH */
 | |
|   goto drop;
 | |
| #endif /* UIP_CONF_ICMP_DEST_UNREACH */
 | |
| 
 | |
|  udp_found:
 | |
|   uip_conn = NULL;
 | |
|   uip_flags = UIP_NEWDATA;
 | |
|   uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
 | |
|   uip_slen = 0;
 | |
|   UIP_UDP_APPCALL();
 | |
| 
 | |
|  udp_send:
 | |
|   if(uip_slen == 0) {
 | |
|     goto drop;
 | |
|   }
 | |
|   uip_len = uip_slen + UIP_IPUDPH_LEN;
 | |
| 
 | |
| #if UIP_CONF_IPV6
 | |
|   /* For IPv6, the IP length field does not include the IPv6 IP header
 | |
|      length. */
 | |
|   BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8);
 | |
|   BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff);
 | |
| #else /* UIP_CONF_IPV6 */
 | |
|   BUF->len[0] = (uip_len >> 8);
 | |
|   BUF->len[1] = (uip_len & 0xff);
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
|   BUF->ttl = uip_udp_conn->ttl;
 | |
|   BUF->proto = UIP_PROTO_UDP;
 | |
| 
 | |
|   UDPBUF->udplen = HTONS(uip_slen + UIP_UDPH_LEN);
 | |
|   UDPBUF->udpchksum = 0;
 | |
| 
 | |
|   BUF->srcport  = uip_udp_conn->lport;
 | |
|   BUF->destport = uip_udp_conn->rport;
 | |
| 
 | |
|   uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
 | |
|   uip_ipaddr_copy(&BUF->destipaddr, &uip_udp_conn->ripaddr);
 | |
| 
 | |
|   uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN];
 | |
| 
 | |
| #if UIP_UDP_CHECKSUMS
 | |
|   /* Calculate UDP checksum. */
 | |
|   UDPBUF->udpchksum = ~(uip_udpchksum());
 | |
|   if(UDPBUF->udpchksum == 0) {
 | |
|     UDPBUF->udpchksum = 0xffff;
 | |
|   }
 | |
| #endif /* UIP_UDP_CHECKSUMS */
 | |
| 
 | |
|   goto ip_send_nolen;
 | |
| #endif /* UIP_UDP */
 | |
| 
 | |
|   /* TCP input processing. */
 | |
|  tcp_input:
 | |
|   UIP_STAT(++uip_stat.tcp.recv);
 | |
| 
 | |
|   /* Start of TCP input header processing code. */
 | |
| 
 | |
|   if(uip_tcpchksum() != 0xffff) {   /* Compute and check the TCP
 | |
| 				       checksum. */
 | |
|     UIP_STAT(++uip_stat.tcp.drop);
 | |
|     UIP_STAT(++uip_stat.tcp.chkerr);
 | |
|     UIP_LOG("tcp: bad checksum.");
 | |
|     goto drop;
 | |
|   }
 | |
| 
 | |
|   /* Demultiplex this segment. */
 | |
|   /* First check any active connections. */
 | |
|   for(uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1];
 | |
|       ++uip_connr) {
 | |
|     if(uip_connr->tcpstateflags != UIP_CLOSED &&
 | |
|        BUF->destport == uip_connr->lport &&
 | |
|        BUF->srcport == uip_connr->rport &&
 | |
|        uip_ipaddr_cmp(&BUF->srcipaddr, &uip_connr->ripaddr)) {
 | |
|       goto found;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* If we didn't find and active connection that expected the packet,
 | |
|      either this packet is an old duplicate, or this is a SYN packet
 | |
|      destined for a connection in LISTEN. If the SYN flag isn't set,
 | |
|      it is an old packet and we send a RST. */
 | |
|   if((BUF->flags & TCP_CTL) != TCP_SYN) {
 | |
|     goto reset;
 | |
|   }
 | |
| 
 | |
|   tmp16 = BUF->destport;
 | |
|   /* Next, check listening connections. */
 | |
|   for(c = 0; c < UIP_LISTENPORTS; ++c) {
 | |
|     if(tmp16 == uip_listenports[c]) {
 | |
|       goto found_listen;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* No matching connection found, so we send a RST packet. */
 | |
|   UIP_STAT(++uip_stat.tcp.synrst);
 | |
| 
 | |
|  reset:
 | |
|   /* We do not send resets in response to resets. */
 | |
|   if(BUF->flags & TCP_RST) {
 | |
|     goto drop;
 | |
|   }
 | |
| 
 | |
|   UIP_STAT(++uip_stat.tcp.rst);
 | |
| 
 | |
|   BUF->flags = TCP_RST | TCP_ACK;
 | |
|   uip_len = UIP_IPTCPH_LEN;
 | |
|   BUF->tcpoffset = 5 << 4;
 | |
| 
 | |
|   /* Flip the seqno and ackno fields in the TCP header. */
 | |
|   c = BUF->seqno[3];
 | |
|   BUF->seqno[3] = BUF->ackno[3];
 | |
|   BUF->ackno[3] = c;
 | |
| 
 | |
|   c = BUF->seqno[2];
 | |
|   BUF->seqno[2] = BUF->ackno[2];
 | |
|   BUF->ackno[2] = c;
 | |
| 
 | |
|   c = BUF->seqno[1];
 | |
|   BUF->seqno[1] = BUF->ackno[1];
 | |
|   BUF->ackno[1] = c;
 | |
| 
 | |
|   c = BUF->seqno[0];
 | |
|   BUF->seqno[0] = BUF->ackno[0];
 | |
|   BUF->ackno[0] = c;
 | |
| 
 | |
|   /* We also have to increase the sequence number we are
 | |
|      acknowledging. If the least significant byte overflowed, we need
 | |
|      to propagate the carry to the other bytes as well. */
 | |
|   if(++BUF->ackno[3] == 0) {
 | |
|     if(++BUF->ackno[2] == 0) {
 | |
|       if(++BUF->ackno[1] == 0) {
 | |
| 	++BUF->ackno[0];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Swap port numbers. */
 | |
|   tmp16 = BUF->srcport;
 | |
|   BUF->srcport = BUF->destport;
 | |
|   BUF->destport = tmp16;
 | |
| 
 | |
|   /* Swap IP addresses. */
 | |
|   uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
 | |
|   uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
 | |
| 
 | |
|   /* And send out the RST packet! */
 | |
|   goto tcp_send_noconn;
 | |
| 
 | |
|   /* This label will be jumped to if we matched the incoming packet
 | |
|      with a connection in LISTEN. In that case, we should create a new
 | |
|      connection and send a SYNACK in return. */
 | |
|  found_listen:
 | |
|   /* First we check if there are any connections available. Unused
 | |
|      connections are kept in the same table as used connections, but
 | |
|      unused ones have the tcpstate set to CLOSED. Also, connections in
 | |
|      TIME_WAIT are kept track of and we'll use the oldest one if no
 | |
|      CLOSED connections are found. Thanks to Eddie C. Dost for a very
 | |
|      nice algorithm for the TIME_WAIT search. */
 | |
|   uip_connr = 0;
 | |
|   for(c = 0; c < UIP_CONNS; ++c) {
 | |
|     if(uip_conns[c].tcpstateflags == UIP_CLOSED) {
 | |
|       uip_connr = &uip_conns[c];
 | |
|       break;
 | |
|     }
 | |
|     if(uip_conns[c].tcpstateflags == UIP_TIME_WAIT) {
 | |
|       if(uip_connr == 0 ||
 | |
| 	 uip_conns[c].timer > uip_connr->timer) {
 | |
| 	uip_connr = &uip_conns[c];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(uip_connr == 0) {
 | |
|     /* All connections are used already, we drop packet and hope that
 | |
|        the remote end will retransmit the packet at a time when we
 | |
|        have more spare connections. */
 | |
|     UIP_STAT(++uip_stat.tcp.syndrop);
 | |
|     UIP_LOG("tcp: found no unused connections.");
 | |
|     goto drop;
 | |
|   }
 | |
|   uip_conn = uip_connr;
 | |
| 
 | |
|   /* Fill in the necessary fields for the new connection. */
 | |
|   uip_connr->rto = uip_connr->timer = UIP_RTO;
 | |
|   uip_connr->sa = 0;
 | |
|   uip_connr->sv = 4;
 | |
|   uip_connr->nrtx = 0;
 | |
|   uip_connr->lport = BUF->destport;
 | |
|   uip_connr->rport = BUF->srcport;
 | |
|   uip_ipaddr_copy(&uip_connr->ripaddr, &BUF->srcipaddr);
 | |
|   uip_connr->tcpstateflags = UIP_SYN_RCVD;
 | |
| 
 | |
|   uip_connr->snd_nxt[0] = iss[0];
 | |
|   uip_connr->snd_nxt[1] = iss[1];
 | |
|   uip_connr->snd_nxt[2] = iss[2];
 | |
|   uip_connr->snd_nxt[3] = iss[3];
 | |
|   uip_connr->len = 1;
 | |
| 
 | |
|   /* rcv_nxt should be the seqno from the incoming packet + 1. */
 | |
|   uip_connr->rcv_nxt[3] = BUF->seqno[3];
 | |
|   uip_connr->rcv_nxt[2] = BUF->seqno[2];
 | |
|   uip_connr->rcv_nxt[1] = BUF->seqno[1];
 | |
|   uip_connr->rcv_nxt[0] = BUF->seqno[0];
 | |
|   uip_add_rcv_nxt(1);
 | |
| 
 | |
|   /* Parse the TCP MSS option, if present. */
 | |
|   if((BUF->tcpoffset & 0xf0) > 0x50) {
 | |
|     for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
 | |
|       opt = uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + c];
 | |
|       if(opt == TCP_OPT_END) {
 | |
| 	/* End of options. */
 | |
| 	break;
 | |
|       } else if(opt == TCP_OPT_NOOP) {
 | |
| 	++c;
 | |
| 	/* NOP option. */
 | |
|       } else if(opt == TCP_OPT_MSS &&
 | |
| 		uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) {
 | |
| 	/* An MSS option with the right option length. */
 | |
| 	tmp16 = ((u16_t)uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
 | |
| 	  (u16_t)uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c];
 | |
| 	uip_connr->initialmss = uip_connr->mss =
 | |
| 	  tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
 | |
| 
 | |
| 	/* And we are done processing options. */
 | |
| 	break;
 | |
|       } else {
 | |
| 	/* All other options have a length field, so that we easily
 | |
| 	   can skip past them. */
 | |
| 	if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
 | |
| 	  /* If the length field is zero, the options are malformed
 | |
| 	     and we don't process them further. */
 | |
| 	  break;
 | |
| 	}
 | |
| 	c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Our response will be a SYNACK. */
 | |
| #if UIP_ACTIVE_OPEN
 | |
|  tcp_send_synack:
 | |
|   BUF->flags = TCP_ACK;
 | |
| 
 | |
|  tcp_send_syn:
 | |
|   BUF->flags |= TCP_SYN;
 | |
| #else /* UIP_ACTIVE_OPEN */
 | |
|  tcp_send_synack:
 | |
|   BUF->flags = TCP_SYN | TCP_ACK;
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
|   /* We send out the TCP Maximum Segment Size option with our
 | |
|      SYNACK. */
 | |
|   BUF->optdata[0] = TCP_OPT_MSS;
 | |
|   BUF->optdata[1] = TCP_OPT_MSS_LEN;
 | |
|   BUF->optdata[2] = (UIP_TCP_MSS) / 256;
 | |
|   BUF->optdata[3] = (UIP_TCP_MSS) & 255;
 | |
|   uip_len = UIP_IPTCPH_LEN + TCP_OPT_MSS_LEN;
 | |
|   BUF->tcpoffset = ((UIP_TCPH_LEN + TCP_OPT_MSS_LEN) / 4) << 4;
 | |
|   goto tcp_send;
 | |
| 
 | |
|   /* This label will be jumped to if we found an active connection. */
 | |
|  found:
 | |
|   uip_conn = uip_connr;
 | |
|   uip_flags = 0;
 | |
|   /* We do a very naive form of TCP reset processing; we just accept
 | |
|      any RST and kill our connection. We should in fact check if the
 | |
|      sequence number of this reset is within our advertised window
 | |
|      before we accept the reset. */
 | |
|   if(BUF->flags & TCP_RST) {
 | |
|     uip_connr->tcpstateflags = UIP_CLOSED;
 | |
|     UIP_LOG("tcp: got reset, aborting connection.");
 | |
|     uip_flags = UIP_ABORT;
 | |
|     UIP_APPCALL();
 | |
|     goto drop;
 | |
|   }
 | |
|   /* Calculate the length of the data, if the application has sent
 | |
|      any data to us. */
 | |
|   c = (BUF->tcpoffset >> 4) << 2;
 | |
|   /* uip_len will contain the length of the actual TCP data. This is
 | |
|      calculated by subtracing the length of the TCP header (in
 | |
|      c) and the length of the IP header (20 bytes). */
 | |
|   uip_len = uip_len - c - UIP_IPH_LEN;
 | |
| 
 | |
|   /* First, check if the sequence number of the incoming packet is
 | |
|      what we're expecting next. If not, we send out an ACK with the
 | |
|      correct numbers in. */
 | |
|   if(!(((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_SYN_SENT) &&
 | |
|        ((BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)))) {
 | |
|     if((uip_len > 0 || ((BUF->flags & (TCP_SYN | TCP_FIN)) != 0)) &&
 | |
|        (BUF->seqno[0] != uip_connr->rcv_nxt[0] ||
 | |
| 	BUF->seqno[1] != uip_connr->rcv_nxt[1] ||
 | |
| 	BUF->seqno[2] != uip_connr->rcv_nxt[2] ||
 | |
| 	BUF->seqno[3] != uip_connr->rcv_nxt[3])) {
 | |
|       goto tcp_send_ack;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /* Next, check if the incoming segment acknowledges any outstanding
 | |
|      data. If so, we update the sequence number, reset the length of
 | |
|      the outstanding data, calculate RTT estimations, and reset the
 | |
|      retransmission timer. */
 | |
|   if((BUF->flags & TCP_ACK) && uip_outstanding(uip_connr)) {
 | |
|     uip_add32(uip_connr->snd_nxt, uip_connr->len);
 | |
| 
 | |
|     if(BUF->ackno[0] == uip_acc32[0] &&
 | |
|        BUF->ackno[1] == uip_acc32[1] &&
 | |
|        BUF->ackno[2] == uip_acc32[2] &&
 | |
|        BUF->ackno[3] == uip_acc32[3]) {
 | |
|       /* Update sequence number. */
 | |
|       uip_connr->snd_nxt[0] = uip_acc32[0];
 | |
|       uip_connr->snd_nxt[1] = uip_acc32[1];
 | |
|       uip_connr->snd_nxt[2] = uip_acc32[2];
 | |
|       uip_connr->snd_nxt[3] = uip_acc32[3];
 | |
| 
 | |
|       /* Do RTT estimation, unless we have done retransmissions. */
 | |
|       if(uip_connr->nrtx == 0) {
 | |
| 	signed char m;
 | |
| 	m = uip_connr->rto - uip_connr->timer;
 | |
| 	/* This is taken directly from VJs original code in his paper */
 | |
| 	m = m - (uip_connr->sa >> 3);
 | |
| 	uip_connr->sa += m;
 | |
| 	if(m < 0) {
 | |
| 	  m = -m;
 | |
| 	}
 | |
| 	m = m - (uip_connr->sv >> 2);
 | |
| 	uip_connr->sv += m;
 | |
| 	uip_connr->rto = (uip_connr->sa >> 3) + uip_connr->sv;
 | |
| 
 | |
|       }
 | |
|       /* Set the acknowledged flag. */
 | |
|       uip_flags = UIP_ACKDATA;
 | |
|       /* Reset the retransmission timer. */
 | |
|       uip_connr->timer = uip_connr->rto;
 | |
| 
 | |
|       /* Reset length of outstanding data. */
 | |
|       uip_connr->len = 0;
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   /* Do different things depending on in what state the connection is. */
 | |
|   switch(uip_connr->tcpstateflags & UIP_TS_MASK) {
 | |
|     /* CLOSED and LISTEN are not handled here. CLOSE_WAIT is not
 | |
| 	implemented, since we force the application to close when the
 | |
| 	peer sends a FIN (hence the application goes directly from
 | |
| 	ESTABLISHED to LAST_ACK). */
 | |
|   case UIP_SYN_RCVD:
 | |
|     /* In SYN_RCVD we have sent out a SYNACK in response to a SYN, and
 | |
|        we are waiting for an ACK that acknowledges the data we sent
 | |
|        out the last time. Therefore, we want to have the UIP_ACKDATA
 | |
|        flag set. If so, we enter the ESTABLISHED state. */
 | |
|     if(uip_flags & UIP_ACKDATA) {
 | |
|       uip_connr->tcpstateflags = UIP_ESTABLISHED;
 | |
|       uip_flags = UIP_CONNECTED;
 | |
|       uip_connr->len = 0;
 | |
|       if(uip_len > 0) {
 | |
|         uip_flags |= UIP_NEWDATA;
 | |
|         uip_add_rcv_nxt(uip_len);
 | |
|       }
 | |
|       uip_slen = 0;
 | |
|       UIP_APPCALL();
 | |
|       goto appsend;
 | |
|     }
 | |
|     goto drop;
 | |
| #if UIP_ACTIVE_OPEN
 | |
|   case UIP_SYN_SENT:
 | |
|     /* In SYN_SENT, we wait for a SYNACK that is sent in response to
 | |
|        our SYN. The rcv_nxt is set to sequence number in the SYNACK
 | |
|        plus one, and we send an ACK. We move into the ESTABLISHED
 | |
|        state. */
 | |
|     if((uip_flags & UIP_ACKDATA) &&
 | |
|        (BUF->flags & TCP_CTL) == (TCP_SYN | TCP_ACK)) {
 | |
| 
 | |
|       /* Parse the TCP MSS option, if present. */
 | |
|       if((BUF->tcpoffset & 0xf0) > 0x50) {
 | |
| 	for(c = 0; c < ((BUF->tcpoffset >> 4) - 5) << 2 ;) {
 | |
| 	  opt = uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + c];
 | |
| 	  if(opt == TCP_OPT_END) {
 | |
| 	    /* End of options. */
 | |
| 	    break;
 | |
| 	  } else if(opt == TCP_OPT_NOOP) {
 | |
| 	    ++c;
 | |
| 	    /* NOP option. */
 | |
| 	  } else if(opt == TCP_OPT_MSS &&
 | |
| 		    uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == TCP_OPT_MSS_LEN) {
 | |
| 	    /* An MSS option with the right option length. */
 | |
| 	    tmp16 = (uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 2 + c] << 8) |
 | |
| 	      uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 3 + c];
 | |
| 	    uip_connr->initialmss =
 | |
| 	      uip_connr->mss = tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
 | |
| 
 | |
| 	    /* And we are done processing options. */
 | |
| 	    break;
 | |
| 	  } else {
 | |
| 	    /* All other options have a length field, so that we easily
 | |
| 	       can skip past them. */
 | |
| 	    if(uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c] == 0) {
 | |
| 	      /* If the length field is zero, the options are malformed
 | |
| 		 and we don't process them further. */
 | |
| 	      break;
 | |
| 	    }
 | |
| 	    c += uip_buf[UIP_TCPIP_HLEN + UIP_LLH_LEN + 1 + c];
 | |
| 	  }
 | |
| 	}
 | |
|       }
 | |
|       uip_connr->tcpstateflags = UIP_ESTABLISHED;
 | |
|       uip_connr->rcv_nxt[0] = BUF->seqno[0];
 | |
|       uip_connr->rcv_nxt[1] = BUF->seqno[1];
 | |
|       uip_connr->rcv_nxt[2] = BUF->seqno[2];
 | |
|       uip_connr->rcv_nxt[3] = BUF->seqno[3];
 | |
|       uip_add_rcv_nxt(1);
 | |
|       uip_flags = UIP_CONNECTED | UIP_NEWDATA;
 | |
|       uip_connr->len = 0;
 | |
|       uip_len = 0;
 | |
|       uip_slen = 0;
 | |
|       UIP_APPCALL();
 | |
|       goto appsend;
 | |
|     }
 | |
|     /* Inform the application that the connection failed */
 | |
|     uip_flags = UIP_ABORT;
 | |
|     UIP_APPCALL();
 | |
|     /* The connection is closed after we send the RST */
 | |
|     uip_conn->tcpstateflags = UIP_CLOSED;
 | |
|     goto reset;
 | |
| #endif /* UIP_ACTIVE_OPEN */
 | |
| 
 | |
|   case UIP_ESTABLISHED:
 | |
|     /* In the ESTABLISHED state, we call upon the application to feed
 | |
|     data into the uip_buf. If the UIP_ACKDATA flag is set, the
 | |
|     application should put new data into the buffer, otherwise we are
 | |
|     retransmitting an old segment, and the application should put that
 | |
|     data into the buffer.
 | |
| 
 | |
|     If the incoming packet is a FIN, we should close the connection on
 | |
|     this side as well, and we send out a FIN and enter the LAST_ACK
 | |
|     state. We require that there is no outstanding data; otherwise the
 | |
|     sequence numbers will be screwed up. */
 | |
| 
 | |
|     if(BUF->flags & TCP_FIN && !(uip_connr->tcpstateflags & UIP_STOPPED)) {
 | |
|       if(uip_outstanding(uip_connr)) {
 | |
| 	goto drop;
 | |
|       }
 | |
|       uip_add_rcv_nxt(1 + uip_len);
 | |
|       uip_flags |= UIP_CLOSE;
 | |
|       if(uip_len > 0) {
 | |
| 	uip_flags |= UIP_NEWDATA;
 | |
|       }
 | |
|       UIP_APPCALL();
 | |
|       uip_connr->len = 1;
 | |
|       uip_connr->tcpstateflags = UIP_LAST_ACK;
 | |
|       uip_connr->nrtx = 0;
 | |
|     tcp_send_finack:
 | |
|       BUF->flags = TCP_FIN | TCP_ACK;
 | |
|       goto tcp_send_nodata;
 | |
|     }
 | |
| 
 | |
|     /* Check the URG flag. If this is set, the segment carries urgent
 | |
|        data that we must pass to the application. */
 | |
|     if((BUF->flags & TCP_URG) != 0) {
 | |
| #if UIP_URGDATA > 0
 | |
|       uip_urglen = (BUF->urgp[0] << 8) | BUF->urgp[1];
 | |
|       if(uip_urglen > uip_len) {
 | |
| 	/* There is more urgent data in the next segment to come. */
 | |
| 	uip_urglen = uip_len;
 | |
|       }
 | |
|       uip_add_rcv_nxt(uip_urglen);
 | |
|       uip_len -= uip_urglen;
 | |
|       uip_urgdata = uip_appdata;
 | |
|       uip_appdata += uip_urglen;
 | |
|     } else {
 | |
|       uip_urglen = 0;
 | |
| #else /* UIP_URGDATA > 0 */
 | |
|       uip_appdata = ((char *)uip_appdata) + ((BUF->urgp[0] << 8) | BUF->urgp[1]);
 | |
|       uip_len -= (BUF->urgp[0] << 8) | BUF->urgp[1];
 | |
| #endif /* UIP_URGDATA > 0 */
 | |
|     }
 | |
| 
 | |
|     /* If uip_len > 0 we have TCP data in the packet, and we flag this
 | |
|        by setting the UIP_NEWDATA flag and update the sequence number
 | |
|        we acknowledge. If the application has stopped the dataflow
 | |
|        using uip_stop(), we must not accept any data packets from the
 | |
|        remote host. */
 | |
|     if(uip_len > 0 && !(uip_connr->tcpstateflags & UIP_STOPPED)) {
 | |
|       uip_flags |= UIP_NEWDATA;
 | |
|       uip_add_rcv_nxt(uip_len);
 | |
|     }
 | |
| 
 | |
|     /* Check if the available buffer space advertised by the other end
 | |
|        is smaller than the initial MSS for this connection. If so, we
 | |
|        set the current MSS to the window size to ensure that the
 | |
|        application does not send more data than the other end can
 | |
|        handle.
 | |
| 
 | |
|        If the remote host advertises a zero window, we set the MSS to
 | |
|        the initial MSS so that the application will send an entire MSS
 | |
|        of data. This data will not be acknowledged by the receiver,
 | |
|        and the application will retransmit it. This is called the
 | |
|        "persistent timer" and uses the retransmission mechanism.
 | |
|     */
 | |
|     tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1];
 | |
|     if(tmp16 > uip_connr->initialmss ||
 | |
|        tmp16 == 0) {
 | |
|       tmp16 = uip_connr->initialmss;
 | |
|     }
 | |
|     uip_connr->mss = tmp16;
 | |
| 
 | |
|     /* If this packet constitutes an ACK for outstanding data (flagged
 | |
|        by the UIP_ACKDATA flag, we should call the application since it
 | |
|        might want to send more data. If the incoming packet had data
 | |
|        from the peer (as flagged by the UIP_NEWDATA flag), the
 | |
|        application must also be notified.
 | |
| 
 | |
|        When the application is called, the global variable uip_len
 | |
|        contains the length of the incoming data. The application can
 | |
|        access the incoming data through the global pointer
 | |
|        uip_appdata, which usually points UIP_IPTCPH_LEN + UIP_LLH_LEN
 | |
|        bytes into the uip_buf array.
 | |
| 
 | |
|        If the application wishes to send any data, this data should be
 | |
|        put into the uip_appdata and the length of the data should be
 | |
|        put into uip_len. If the application don't have any data to
 | |
|        send, uip_len must be set to 0. */
 | |
|     if(uip_flags & (UIP_NEWDATA | UIP_ACKDATA)) {
 | |
|       uip_slen = 0;
 | |
|       UIP_APPCALL();
 | |
| 
 | |
|     appsend:
 | |
| 
 | |
|       if(uip_flags & UIP_ABORT) {
 | |
| 	uip_slen = 0;
 | |
| 	uip_connr->tcpstateflags = UIP_CLOSED;
 | |
| 	BUF->flags = TCP_RST | TCP_ACK;
 | |
| 	goto tcp_send_nodata;
 | |
|       }
 | |
| 
 | |
|       if(uip_flags & UIP_CLOSE) {
 | |
| 	uip_slen = 0;
 | |
| 	uip_connr->len = 1;
 | |
| 	uip_connr->tcpstateflags = UIP_FIN_WAIT_1;
 | |
| 	uip_connr->nrtx = 0;
 | |
| 	BUF->flags = TCP_FIN | TCP_ACK;
 | |
| 	goto tcp_send_nodata;
 | |
|       }
 | |
| 
 | |
|       /* If uip_slen > 0, the application has data to be sent. */
 | |
|       if(uip_slen > 0) {
 | |
| 
 | |
| 	/* If the connection has acknowledged data, the contents of
 | |
| 	   the ->len variable should be discarded. */
 | |
| 	if((uip_flags & UIP_ACKDATA) != 0) {
 | |
| 	  uip_connr->len = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* If the ->len variable is non-zero the connection has
 | |
| 	   already data in transit and cannot send anymore right
 | |
| 	   now. */
 | |
| 	if(uip_connr->len == 0) {
 | |
| 
 | |
| 	  /* The application cannot send more than what is allowed by
 | |
| 	     the mss (the minumum of the MSS and the available
 | |
| 	     window). */
 | |
| 	  if(uip_slen > uip_connr->mss) {
 | |
| 	    uip_slen = uip_connr->mss;
 | |
| 	  }
 | |
| 
 | |
| 	  /* Remember how much data we send out now so that we know
 | |
| 	     when everything has been acknowledged. */
 | |
| 	  uip_connr->len = uip_slen;
 | |
| 	} else {
 | |
| 
 | |
| 	  /* If the application already had unacknowledged data, we
 | |
| 	     make sure that the application does not send (i.e.,
 | |
| 	     retransmit) out more than it previously sent out. */
 | |
| 	  uip_slen = uip_connr->len;
 | |
| 	}
 | |
|       }
 | |
|       uip_connr->nrtx = 0;
 | |
|     apprexmit:
 | |
|       uip_appdata = uip_sappdata;
 | |
| 
 | |
|       /* If the application has data to be sent, or if the incoming
 | |
|          packet had new data in it, we must send out a packet. */
 | |
|       if(uip_slen > 0 && uip_connr->len > 0) {
 | |
| 	/* Add the length of the IP and TCP headers. */
 | |
| 	uip_len = uip_connr->len + UIP_TCPIP_HLEN;
 | |
| 	/* We always set the ACK flag in response packets. */
 | |
| 	BUF->flags = TCP_ACK | TCP_PSH;
 | |
| 	/* Send the packet. */
 | |
| 	goto tcp_send_noopts;
 | |
|       }
 | |
|       /* If there is no data to send, just send out a pure ACK if
 | |
| 	 there is newdata. */
 | |
|       if(uip_flags & UIP_NEWDATA) {
 | |
| 	uip_len = UIP_TCPIP_HLEN;
 | |
| 	BUF->flags = TCP_ACK;
 | |
| 	goto tcp_send_noopts;
 | |
|       }
 | |
|     }
 | |
|     goto drop;
 | |
|   case UIP_LAST_ACK:
 | |
|     /* We can close this connection if the peer has acknowledged our
 | |
|        FIN. This is indicated by the UIP_ACKDATA flag. */
 | |
|     if(uip_flags & UIP_ACKDATA) {
 | |
|       uip_connr->tcpstateflags = UIP_CLOSED;
 | |
|       uip_flags = UIP_CLOSE;
 | |
|       UIP_APPCALL();
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case UIP_FIN_WAIT_1:
 | |
|     /* The application has closed the connection, but the remote host
 | |
|        hasn't closed its end yet. Thus we do nothing but wait for a
 | |
|        FIN from the other side. */
 | |
|     if(uip_len > 0) {
 | |
|       uip_add_rcv_nxt(uip_len);
 | |
|     }
 | |
|     if(BUF->flags & TCP_FIN) {
 | |
|       if(uip_flags & UIP_ACKDATA) {
 | |
| 	uip_connr->tcpstateflags = UIP_TIME_WAIT;
 | |
| 	uip_connr->timer = 0;
 | |
| 	uip_connr->len = 0;
 | |
|       } else {
 | |
| 	uip_connr->tcpstateflags = UIP_CLOSING;
 | |
|       }
 | |
|       uip_add_rcv_nxt(1);
 | |
|       uip_flags = UIP_CLOSE;
 | |
|       UIP_APPCALL();
 | |
|       goto tcp_send_ack;
 | |
|     } else if(uip_flags & UIP_ACKDATA) {
 | |
|       uip_connr->tcpstateflags = UIP_FIN_WAIT_2;
 | |
|       uip_connr->len = 0;
 | |
|       goto drop;
 | |
|     }
 | |
|     if(uip_len > 0) {
 | |
|       goto tcp_send_ack;
 | |
|     }
 | |
|     goto drop;
 | |
| 
 | |
|   case UIP_FIN_WAIT_2:
 | |
|     if(uip_len > 0) {
 | |
|       uip_add_rcv_nxt(uip_len);
 | |
|     }
 | |
|     if(BUF->flags & TCP_FIN) {
 | |
|       uip_connr->tcpstateflags = UIP_TIME_WAIT;
 | |
|       uip_connr->timer = 0;
 | |
|       uip_add_rcv_nxt(1);
 | |
|       uip_flags = UIP_CLOSE;
 | |
|       UIP_APPCALL();
 | |
|       goto tcp_send_ack;
 | |
|     }
 | |
|     if(uip_len > 0) {
 | |
|       goto tcp_send_ack;
 | |
|     }
 | |
|     goto drop;
 | |
| 
 | |
|   case UIP_TIME_WAIT:
 | |
|     goto tcp_send_ack;
 | |
| 
 | |
|   case UIP_CLOSING:
 | |
|     if(uip_flags & UIP_ACKDATA) {
 | |
|       uip_connr->tcpstateflags = UIP_TIME_WAIT;
 | |
|       uip_connr->timer = 0;
 | |
|     }
 | |
|   }
 | |
|   goto drop;
 | |
| 
 | |
|   /* We jump here when we are ready to send the packet, and just want
 | |
|      to set the appropriate TCP sequence numbers in the TCP header. */
 | |
|  tcp_send_ack:
 | |
|   BUF->flags = TCP_ACK;
 | |
| 
 | |
|  tcp_send_nodata:
 | |
|   uip_len = UIP_IPTCPH_LEN;
 | |
| 
 | |
|  tcp_send_noopts:
 | |
|   BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4;
 | |
| 
 | |
|   /* We're done with the input processing. We are now ready to send a
 | |
|      reply. Our job is to fill in all the fields of the TCP and IP
 | |
|      headers before calculating the checksum and finally send the
 | |
|      packet. */
 | |
|  tcp_send:
 | |
|   BUF->ackno[0] = uip_connr->rcv_nxt[0];
 | |
|   BUF->ackno[1] = uip_connr->rcv_nxt[1];
 | |
|   BUF->ackno[2] = uip_connr->rcv_nxt[2];
 | |
|   BUF->ackno[3] = uip_connr->rcv_nxt[3];
 | |
| 
 | |
|   BUF->seqno[0] = uip_connr->snd_nxt[0];
 | |
|   BUF->seqno[1] = uip_connr->snd_nxt[1];
 | |
|   BUF->seqno[2] = uip_connr->snd_nxt[2];
 | |
|   BUF->seqno[3] = uip_connr->snd_nxt[3];
 | |
| 
 | |
|   BUF->proto = UIP_PROTO_TCP;
 | |
| 
 | |
|   BUF->srcport  = uip_connr->lport;
 | |
|   BUF->destport = uip_connr->rport;
 | |
| 
 | |
|   uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
 | |
|   uip_ipaddr_copy(&BUF->destipaddr, &uip_connr->ripaddr);
 | |
| 
 | |
|   if(uip_connr->tcpstateflags & UIP_STOPPED) {
 | |
|     /* If the connection has issued uip_stop(), we advertise a zero
 | |
|        window so that the remote host will stop sending data. */
 | |
|     BUF->wnd[0] = BUF->wnd[1] = 0;
 | |
|   } else {
 | |
|     BUF->wnd[0] = ((UIP_RECEIVE_WINDOW) >> 8);
 | |
|     BUF->wnd[1] = ((UIP_RECEIVE_WINDOW) & 0xff);
 | |
|   }
 | |
| 
 | |
|  tcp_send_noconn:
 | |
|   BUF->ttl = UIP_TTL;
 | |
| #if UIP_CONF_IPV6
 | |
|   /* For IPv6, the IP length field does not include the IPv6 IP header
 | |
|      length. */
 | |
|   BUF->len[0] = ((uip_len - UIP_IPH_LEN) >> 8);
 | |
|   BUF->len[1] = ((uip_len - UIP_IPH_LEN) & 0xff);
 | |
| #else /* UIP_CONF_IPV6 */
 | |
|   BUF->len[0] = (uip_len >> 8);
 | |
|   BUF->len[1] = (uip_len & 0xff);
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | |
|   BUF->urgp[0] = BUF->urgp[1] = 0;
 | |
| 
 | |
|   /* Calculate TCP checksum. */
 | |
|   BUF->tcpchksum = 0;
 | |
|   BUF->tcpchksum = ~(uip_tcpchksum());
 | |
| 
 | |
|  ip_send_nolen:
 | |
| #if UIP_CONF_IPV6
 | |
|   BUF->vtc = 0x60;
 | |
|   BUF->tcflow = 0x00;
 | |
|   BUF->flow = 0x00;
 | |
| #else /* UIP_CONF_IPV6 */
 | |
|   BUF->vhl = 0x45;
 | |
|   BUF->tos = 0;
 | |
|   BUF->ipoffset[0] = BUF->ipoffset[1] = 0;
 | |
|   ++ipid;
 | |
|   BUF->ipid[0] = ipid >> 8;
 | |
|   BUF->ipid[1] = ipid & 0xff;
 | |
|   /* Calculate IP checksum. */
 | |
|   BUF->ipchksum = 0;
 | |
|   BUF->ipchksum = ~(uip_ipchksum());
 | |
|   DEBUG_PRINTF("uip ip_send_nolen: chkecum 0x%04x\n", uip_ipchksum());
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
|   UIP_STAT(++uip_stat.tcp.sent);
 | |
| #if UIP_CONF_IPV6
 | |
|  send:
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
|   DEBUG_PRINTF("Sending packet with length %d (%d)\n", uip_len,
 | |
| 	       (BUF->len[0] << 8) | BUF->len[1]);
 | |
| 
 | |
|   UIP_STAT(++uip_stat.ip.sent);
 | |
|   /* Return and let the caller do the actual transmission. */
 | |
|   uip_flags = 0;
 | |
|   return;
 | |
| 
 | |
|  drop:
 | |
|   uip_len = 0;
 | |
|   uip_flags = 0;
 | |
|   return;
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| u16_t
 | |
| htons(u16_t val)
 | |
| {
 | |
|   return HTONS(val);
 | |
| }
 | |
| 
 | |
| u32_t
 | |
| htonl(u32_t val)
 | |
| {
 | |
|   return HTONL(val);
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| void
 | |
| uip_send(const void *data, int len)
 | |
| {
 | |
|   int copylen;
 | |
| #define MIN(a,b) ((a) < (b)? (a): (b))
 | |
|   copylen = MIN(len, UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN -
 | |
| 		(int)((char *)uip_sappdata - (char *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]));
 | |
|   if(copylen > 0) {
 | |
|     uip_slen = copylen;
 | |
|     if(data != uip_sappdata) {
 | |
|       memcpy(uip_sappdata, (data), uip_slen);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| /*---------------------------------------------------------------------------*/
 | |
| /** @} */
 | |
| #endif /* UIP_CONF_IPV6 */
 | |
| 
 | 
