mirror of
				https://github.com/mfulz/qmk_firmware.git
				synced 2025-10-30 21:02:32 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			288 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			288 lines
		
	
	
		
			7.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
| MIT License
 | |
| Copyright (c) 2018, JacoBurge
 | |
| Adapted for QMK by Jack Humbert in 2018
 | |
| 
 | |
| Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| of this software and associated documentation files (the "Software"), to deal
 | |
| in the Software without restriction, including without limitation the rights
 | |
| to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| copies of the Software, and to permit persons to whom the Software is
 | |
| furnished to do so, subject to the following conditions:
 | |
| The above copyright notice and this permission notice shall be included in all
 | |
| copies or substantial portions of the Software.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 | |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
| SOFTWARE.
 | |
| */
 | |
| 
 | |
| #include "matrix.h"
 | |
| #include "i2c_master.h"
 | |
| #include "quantum.h"
 | |
| 
 | |
| #define VIBRATE_LENGTH 50 //Defines number of interrupts motor will vibrate for, must be bigger than 8 for correct operation
 | |
| volatile uint8_t vibrate = 0; //Trigger vibration in interrupt
 | |
| 
 | |
| static matrix_row_t matrix[MATRIX_ROWS];
 | |
| 
 | |
| const uint8_t SENr[6] = {1, 2, 3, 5, 6, 7};//Maps capacitive pads to pins
 | |
| const uint8_t SENc[6] = {0, 4, 8, 9, 10, 11};
 | |
| 
 | |
| volatile uint8_t LEDs[6][6] = {{0}};//Stores current LED values
 | |
| 
 | |
| //Read data from the cap touch IC
 | |
| uint8_t readDataFromTS(uint8_t reg) {
 | |
|   uint8_t rx[1] = { 0 };
 | |
|   if (i2c_readReg(0x1C << 1, reg, rx, 1, 100) == 0) {
 | |
|     return rx[0];
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| //Write data to cap touch IC
 | |
| uint8_t writeDataToTS(uint8_t reg, uint8_t data) {
 | |
|   uint8_t tx[2] = { reg, data };
 | |
|   if (i2c_transmit(0x1C << 1, tx, 2, 100) == 0) {
 | |
|     return 1;
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| uint8_t checkTSPres(void) {
 | |
|   return (readDataFromTS(0x00) == 0x3E);
 | |
| }
 | |
| 
 | |
| uint8_t capSetup(void) {
 | |
| 
 | |
|   uint8_t temp_return = checkTSPres();
 | |
| 
 | |
|   if (temp_return == 1) {
 | |
|     // Perform measurements every 16ms
 | |
|     writeDataToTS(0x08, 1);
 | |
| 
 | |
|     // Increase detection integrator value
 | |
|     writeDataToTS(0x0B, 1);
 | |
| 
 | |
|     // Oversample to gain two bits for columns
 | |
|     writeDataToTS(0x28, 0x42);
 | |
|     writeDataToTS(0x29, 0x00);
 | |
|     writeDataToTS(0x2A, 0x00);
 | |
|     writeDataToTS(0x2B, 0x00);
 | |
|     writeDataToTS(0x2C, 0x42);
 | |
|     writeDataToTS(0x2D, 0x00);
 | |
|     writeDataToTS(0x2E, 0x00);
 | |
|     writeDataToTS(0x2F, 0x00);
 | |
|     writeDataToTS(0x30, 0x42);
 | |
|     writeDataToTS(0x31, 0x42);
 | |
|     writeDataToTS(0x32, 0x42);
 | |
|     writeDataToTS(0x33, 0x42);
 | |
| 
 | |
|     // Recalibration if touch detected for more than 8 seconds n*0.16s
 | |
|     writeDataToTS(0x0C, 50);
 | |
| 
 | |
|     // Enable keys and set key groups
 | |
|     writeDataToTS(0x1C, 0x00 | 0x04);
 | |
|     writeDataToTS(0x1D, 0x00 | 0x08);
 | |
|     writeDataToTS(0x1E, 0x00 | 0x08);
 | |
|     writeDataToTS(0x1F, 0x00 | 0x08);
 | |
|     writeDataToTS(0x20, 0x00 | 0x04);
 | |
|     writeDataToTS(0x21, 0x00 | 0x08);
 | |
|     writeDataToTS(0x22, 0x00 | 0x08);
 | |
|     writeDataToTS(0x23, 0x00 | 0x08);
 | |
|     writeDataToTS(0x24, 0x00 | 0x04);
 | |
|     writeDataToTS(0x25, 0x00 | 0x04);
 | |
|     writeDataToTS(0x26, 0x00 | 0x04);
 | |
|     writeDataToTS(0x27, 0x00 | 0x04);
 | |
| 
 | |
|   }
 | |
|   return temp_return;
 | |
| }
 | |
| 
 | |
| __attribute__ ((weak))
 | |
| void matrix_init_user(void) {}
 | |
| 
 | |
| __attribute__ ((weak))
 | |
| void matrix_scan_user(void) {}
 | |
| 
 | |
| __attribute__ ((weak))
 | |
| void matrix_init_kb(void) {}
 | |
| 
 | |
| __attribute__ ((weak))
 | |
| void matrix_scan_kb(void) {}
 | |
| 
 | |
| void matrix_init(void) {
 | |
| 
 | |
|   i2c_init();
 | |
| 
 | |
|   //Motor enable
 | |
|   setPinOutput(E6);
 | |
|   //Motor PWM
 | |
|   setPinOutput(D7);
 | |
| 
 | |
|   //Power LED
 | |
|   setPinOutput(B7);
 | |
|   writePinHigh(B7);
 | |
| 
 | |
|   //LEDs Columns
 | |
|   setPinOutput(F7);
 | |
|   setPinOutput(F6);
 | |
|   setPinOutput(F5);
 | |
|   setPinOutput(F4);
 | |
|   setPinOutput(F1);
 | |
|   setPinOutput(F0);
 | |
| 
 | |
|   //LEDs Rows
 | |
|   setPinOutput(D6);
 | |
|   setPinOutput(B4);
 | |
|   setPinOutput(B5);
 | |
|   setPinOutput(B6);
 | |
|   setPinOutput(C6);
 | |
|   setPinOutput(C7);
 | |
| 
 | |
|   //Capacitive Interrupt
 | |
|   setPinInput(D2);
 | |
| 
 | |
|   capSetup();
 | |
|   writeDataToTS(0x06, 0x12); //Calibrate capacitive touch IC
 | |
| 
 | |
|   memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t));
 | |
| 
 | |
|   matrix_init_quantum();
 | |
| }
 | |
| 
 | |
| 
 | |
| uint16_t touchDetectionRoutine(void) {
 | |
|   uint16_t data;
 | |
|   uint8_t temp1, temp2;
 | |
| 
 | |
|   temp1 = readDataFromTS(0x04);
 | |
|   temp2 = readDataFromTS(0x03);
 | |
|   data = temp1;
 | |
|   data = (data << 8) | temp2;
 | |
|   return data;
 | |
| 
 | |
| }
 | |
| 
 | |
| //Process raw capacitive data, map pins to rows and columns
 | |
| void decodeArray(uint16_t dataIn, uint8_t *column, uint8_t *row) {
 | |
|   uint8_t i1 = 20, i2 = 20;
 | |
|   for (uint8_t i = 0; i < 12; i++) {
 | |
|     if ((dataIn & 0b1) == 1) {
 | |
|       if (i1 == 20) {
 | |
|         i1 = i;
 | |
|       } else if (i2 == 20) {
 | |
|         i2 = i;
 | |
|       }
 | |
|     }
 | |
|     dataIn = dataIn >> 1;
 | |
|   }
 | |
| 
 | |
|   for (uint8_t j = 0; j < 6; j++) {
 | |
|     if (SENr[j] == i1 || SENr[j] == i2) {
 | |
|       *row = j;
 | |
|     }
 | |
|     if (SENc[j] == i1 || SENc[j] == i2) {
 | |
|       *column = j;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void touchClearCurrentDetections(void) {
 | |
|   readDataFromTS(0x05);
 | |
|   readDataFromTS(0x02);
 | |
|   readDataFromTS(0x03);
 | |
|   readDataFromTS(0x04);
 | |
| }
 | |
| 
 | |
| //Check interrupt pin
 | |
| uint8_t isTouchChangeDetected(void) {
 | |
|   return !readPin(D2);
 | |
| }
 | |
| 
 | |
| uint8_t matrix_scan(void) {
 | |
|   if (isTouchChangeDetected()) {
 | |
|     uint16_t dataIn = touchDetectionRoutine();
 | |
|     if ((dataIn & 0b111100010001) > 0 && (dataIn & 0b000011101110) > 0) {
 | |
|       uint8_t column = 10, row = 10;
 | |
|       decodeArray(dataIn, &column, &row);
 | |
|       if (column != 10 && row != 10) {
 | |
|         vibrate = VIBRATE_LENGTH; //Trigger vibration
 | |
|         matrix[row] = _BV(column);
 | |
|       } else {
 | |
|         memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t));
 | |
|       }
 | |
|     } else {
 | |
|       memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t));
 | |
|     }
 | |
|     touchClearCurrentDetections();
 | |
|   }
 | |
| 
 | |
|   for (uint8_t c = 0; c < 6; c++) {
 | |
|     for (uint8_t r = 0; r < 6; r++) {
 | |
|       switch (r) {
 | |
|         case 0: writePin(D6, matrix_is_on(r, c)); break;
 | |
|         case 1: writePin(B4, matrix_is_on(r, c)); break;
 | |
|         case 2: writePin(B5, matrix_is_on(r, c)); break;
 | |
|         case 3: writePin(B6, matrix_is_on(r, c)); break;
 | |
|         case 4: writePin(C6, matrix_is_on(r, c)); break;
 | |
|         case 5: writePin(C7, matrix_is_on(r, c)); break;
 | |
|       }
 | |
| 
 | |
|       switch (c) {
 | |
|         case 0: writePin(F5, !matrix_is_on(r, c)); break;
 | |
|         case 1: writePin(F4, !matrix_is_on(r, c)); break;
 | |
|         case 2: writePin(F1, !matrix_is_on(r, c)); break;
 | |
|         case 3: writePin(F0, !matrix_is_on(r, c)); break;
 | |
|         case 4: writePin(F6, !matrix_is_on(r, c)); break;
 | |
|         case 5: writePin(F7, !matrix_is_on(r, c)); break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (vibrate == VIBRATE_LENGTH) {
 | |
|     writePinHigh(E6);
 | |
|     writePinHigh(D7);
 | |
|     vibrate--;
 | |
|   }  else if (vibrate > 0) {
 | |
|     vibrate--;
 | |
|   } else if (vibrate == 0) {
 | |
|     writePinLow(D7);
 | |
|     writePinLow(E6);
 | |
|   }
 | |
| 
 | |
|   matrix_scan_quantum();
 | |
| 
 | |
|   return 1;
 | |
| 
 | |
| }
 | |
| 
 | |
| bool matrix_is_on(uint8_t row, uint8_t col) {
 | |
|     return (matrix[row] & (1<<col));
 | |
| }
 | |
| 
 | |
| matrix_row_t matrix_get_row(uint8_t row) {
 | |
|     return matrix[row];
 | |
| }
 | |
| 
 | |
| void matrix_print(void) {
 | |
|     printf("\nr/c 01234567\n");
 | |
|     for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
 | |
|         printf("%X0: ", row);
 | |
|         matrix_row_t data = matrix_get_row(row);
 | |
|         for (int col = 0; col < MATRIX_COLS; col++) {
 | |
|             if (data & (1<<col))
 | |
|                 printf("1");
 | |
|             else
 | |
|                 printf("0");
 | |
|         }
 | |
|         printf("\n");
 | |
|     }
 | |
| }
 | 
