mirror of
				https://github.com/mfulz/qmk_firmware.git
				synced 2025-10-31 13:22:31 +01:00 
			
		
		
		
	 c66df16644
			
		
	
	
		c66df16644
		
			
		
	
	
	
	
		
			
			* Branch point for 2020 November 28 Breaking Change * Remove matrix_col_t to allow MATRIX_ROWS > 32 (#10183) * Add support for soft serial to ATmega32U2 (#10204) * Change MIDI velocity implementation to allow direct control of velocity value (#9940) * Add ability to build a subset of all keyboards based on platform. * Actually use eeprom_driver_init(). * Make bootloader_jump weak for ChibiOS. (#10417) * Joystick 16-bit support (#10439) * Per-encoder resolutions (#10259) * Share button state from mousekey to pointing_device (#10179) * Add hotfix for chibios keyboards not wake (#10088) * Add advanced/efficient RGB Matrix Indicators (#8564) * Naming change. * Support for STM32 GPIOF,G,H,I,J,K (#10206) * Add milc as a dependency and remove the installed milc (#10563) * ChibiOS upgrade: early init conversions (#10214) * ChibiOS upgrade: configuration file migrator (#9952) * Haptic and solenoid cleanup (#9700) * XD75 cleanup (#10524) * OLED display update interval support (#10388) * Add definition based on currently-selected serial driver. (#10716) * New feature: Retro Tapping per key (#10622) * Allow for modification of output RGB values when using rgblight/rgb_matrix. (#10638) * Add housekeeping task callbacks so that keyboards/keymaps are capable of executing code for each main loop iteration. (#10530) * Rescale both ChibiOS and AVR backlighting. * Reduce Helix keyboard build variation (#8669) * Minor change to behavior allowing display updates to continue between task ticks (#10750) * Some GPIO manipulations in matrix.c change to atomic. (#10491) * qmk cformat (#10767) * [Keyboard] Update the Speedo firmware for v3.0 (#10657) * Maartenwut/Maarten namechange to evyd13/Evy (#10274) * [quantum] combine repeated lines of code (#10837) * Add step sequencer feature (#9703) * aeboards/ext65 refactor (#10820) * Refactor xelus/dawn60 for Rev2 later (#10584) * add DEBUG_MATRIX_SCAN_RATE_ENABLE to common_features.mk (#10824) * [Core] Added `add_oneshot_mods` & `del_oneshot_mods` (#10549) * update chibios os usb for the otg driver (#8893) * Remove HD44780 References, Part 4 (#10735) * [Keyboard] Add Valor FRL TKL (+refactor) (#10512) * Fix cursor position bug in oled_write_raw functions (#10800) * Fixup version.h writing when using SKIP_VERSION=yes (#10972) * Allow for certain code in the codebase assuming length of string. (#10974) * Add AT90USB support for serial.c (#10706) * Auto shift: support repeats and early registration (#9826) * Rename ledmatrix.h to match .c file (#7949) * Split RGB_MATRIX_ENABLE into _ENABLE and _DRIVER (#10231) * Split LED_MATRIX_ENABLE into _ENABLE and _DRIVER (#10840) * Merge point for 2020 Nov 28 Breaking Change
		
			
				
	
	
		
			276 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			276 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Copyright 2020 Rodolphe Belouin
 | ||
|  *
 | ||
|  * This program is free software: you can redistribute it and/or modify
 | ||
|  * it under the terms of the GNU General Public License as published by
 | ||
|  * the Free Software Foundation, either version 2 of the License, or
 | ||
|  * (at your option) any later version.
 | ||
|  *
 | ||
|  * This program is distributed in the hope that it will be useful,
 | ||
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | ||
|  * GNU General Public License for more details.
 | ||
|  *
 | ||
|  * You should have received a copy of the GNU General Public License
 | ||
|  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | ||
|  */
 | ||
| 
 | ||
| #include "sequencer.h"
 | ||
| 
 | ||
| #ifdef MIDI_ENABLE
 | ||
| #    include "process_midi.h"
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef MIDI_MOCKED
 | ||
| #    include "tests/midi_mock.h"
 | ||
| #endif
 | ||
| 
 | ||
| sequencer_config_t sequencer_config = {
 | ||
|     false,     // enabled
 | ||
|     {false},   // steps
 | ||
|     {0},       // track notes
 | ||
|     60,        // tempo
 | ||
|     SQ_RES_4,  // resolution
 | ||
| };
 | ||
| 
 | ||
| sequencer_state_t sequencer_internal_state = {0, 0, 0, 0, SEQUENCER_PHASE_ATTACK};
 | ||
| 
 | ||
| bool is_sequencer_on(void) { return sequencer_config.enabled; }
 | ||
| 
 | ||
| void sequencer_on(void) {
 | ||
|     dprintln("sequencer on");
 | ||
|     sequencer_config.enabled               = true;
 | ||
|     sequencer_internal_state.current_track = 0;
 | ||
|     sequencer_internal_state.current_step  = 0;
 | ||
|     sequencer_internal_state.timer         = timer_read();
 | ||
|     sequencer_internal_state.phase         = SEQUENCER_PHASE_ATTACK;
 | ||
| }
 | ||
| 
 | ||
| void sequencer_off(void) {
 | ||
|     dprintln("sequencer off");
 | ||
|     sequencer_config.enabled              = false;
 | ||
|     sequencer_internal_state.current_step = 0;
 | ||
| }
 | ||
| 
 | ||
| void sequencer_toggle(void) {
 | ||
|     if (is_sequencer_on()) {
 | ||
|         sequencer_off();
 | ||
|     } else {
 | ||
|         sequencer_on();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_set_track_notes(const uint16_t track_notes[SEQUENCER_TRACKS]) {
 | ||
|     for (uint8_t i = 0; i < SEQUENCER_TRACKS; i++) {
 | ||
|         sequencer_config.track_notes[i] = track_notes[i];
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| bool is_sequencer_track_active(uint8_t track) { return (sequencer_internal_state.active_tracks >> track) & true; }
 | ||
| 
 | ||
| void sequencer_set_track_activation(uint8_t track, bool value) {
 | ||
|     if (value) {
 | ||
|         sequencer_internal_state.active_tracks |= (1 << track);
 | ||
|     } else {
 | ||
|         sequencer_internal_state.active_tracks &= ~(1 << track);
 | ||
|     }
 | ||
|     dprintf("sequencer: track %d is %s\n", track, value ? "active" : "inactive");
 | ||
| }
 | ||
| 
 | ||
| void sequencer_toggle_track_activation(uint8_t track) { sequencer_set_track_activation(track, !is_sequencer_track_active(track)); }
 | ||
| 
 | ||
| void sequencer_toggle_single_active_track(uint8_t track) {
 | ||
|     if (is_sequencer_track_active(track)) {
 | ||
|         sequencer_internal_state.active_tracks = 0;
 | ||
|     } else {
 | ||
|         sequencer_internal_state.active_tracks = 1 << track;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| bool is_sequencer_step_on(uint8_t step) { return step < SEQUENCER_STEPS && (sequencer_config.steps[step] & sequencer_internal_state.active_tracks) > 0; }
 | ||
| 
 | ||
| bool is_sequencer_step_on_for_track(uint8_t step, uint8_t track) { return step < SEQUENCER_STEPS && (sequencer_config.steps[step] >> track) & true; }
 | ||
| 
 | ||
| void sequencer_set_step(uint8_t step, bool value) {
 | ||
|     if (step < SEQUENCER_STEPS) {
 | ||
|         if (value) {
 | ||
|             sequencer_config.steps[step] |= sequencer_internal_state.active_tracks;
 | ||
|         } else {
 | ||
|             sequencer_config.steps[step] &= ~sequencer_internal_state.active_tracks;
 | ||
|         }
 | ||
|         dprintf("sequencer: step %d is %s\n", step, value ? "on" : "off");
 | ||
|     } else {
 | ||
|         dprintf("sequencer: step %d is out of range\n", step);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_toggle_step(uint8_t step) {
 | ||
|     if (is_sequencer_step_on(step)) {
 | ||
|         sequencer_set_step_off(step);
 | ||
|     } else {
 | ||
|         sequencer_set_step_on(step);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_set_all_steps(bool value) {
 | ||
|     for (uint8_t step = 0; step < SEQUENCER_STEPS; step++) {
 | ||
|         if (value) {
 | ||
|             sequencer_config.steps[step] |= sequencer_internal_state.active_tracks;
 | ||
|         } else {
 | ||
|             sequencer_config.steps[step] &= ~sequencer_internal_state.active_tracks;
 | ||
|         }
 | ||
|     }
 | ||
|     dprintf("sequencer: all steps are %s\n", value ? "on" : "off");
 | ||
| }
 | ||
| 
 | ||
| uint8_t sequencer_get_tempo(void) { return sequencer_config.tempo; }
 | ||
| 
 | ||
| void sequencer_set_tempo(uint8_t tempo) {
 | ||
|     if (tempo > 0) {
 | ||
|         sequencer_config.tempo = tempo;
 | ||
|         dprintf("sequencer: tempo set to %d bpm\n", tempo);
 | ||
|     } else {
 | ||
|         dprintln("sequencer: cannot set tempo to 0");
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_increase_tempo(void) {
 | ||
|     // Handling potential uint8_t overflow
 | ||
|     if (sequencer_config.tempo < UINT8_MAX) {
 | ||
|         sequencer_set_tempo(sequencer_config.tempo + 1);
 | ||
|     } else {
 | ||
|         dprintf("sequencer: cannot set tempo above %d\n", UINT8_MAX);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_decrease_tempo(void) { sequencer_set_tempo(sequencer_config.tempo - 1); }
 | ||
| 
 | ||
| sequencer_resolution_t sequencer_get_resolution(void) { return sequencer_config.resolution; }
 | ||
| 
 | ||
| void sequencer_set_resolution(sequencer_resolution_t resolution) {
 | ||
|     if (resolution >= 0 && resolution < SEQUENCER_RESOLUTIONS) {
 | ||
|         sequencer_config.resolution = resolution;
 | ||
|         dprintf("sequencer: resolution set to %d\n", resolution);
 | ||
|     } else {
 | ||
|         dprintf("sequencer: resolution %d is out of range\n", resolution);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_increase_resolution(void) { sequencer_set_resolution(sequencer_config.resolution + 1); }
 | ||
| 
 | ||
| void sequencer_decrease_resolution(void) { sequencer_set_resolution(sequencer_config.resolution - 1); }
 | ||
| 
 | ||
| uint8_t sequencer_get_current_step(void) { return sequencer_internal_state.current_step; }
 | ||
| 
 | ||
| void sequencer_phase_attack(void) {
 | ||
|     dprintf("sequencer: step %d\n", sequencer_internal_state.current_step);
 | ||
|     dprintf("sequencer: time %d\n", timer_read());
 | ||
| 
 | ||
|     if (sequencer_internal_state.current_track == 0) {
 | ||
|         sequencer_internal_state.timer = timer_read();
 | ||
|     }
 | ||
| 
 | ||
|     if (timer_elapsed(sequencer_internal_state.timer) < sequencer_internal_state.current_track * SEQUENCER_TRACK_THROTTLE) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
| #if defined(MIDI_ENABLE) || defined(MIDI_MOCKED)
 | ||
|     if (is_sequencer_step_on_for_track(sequencer_internal_state.current_step, sequencer_internal_state.current_track)) {
 | ||
|         process_midi_basic_noteon(midi_compute_note(sequencer_config.track_notes[sequencer_internal_state.current_track]));
 | ||
|     }
 | ||
| #endif
 | ||
| 
 | ||
|     if (sequencer_internal_state.current_track < SEQUENCER_TRACKS - 1) {
 | ||
|         sequencer_internal_state.current_track++;
 | ||
|     } else {
 | ||
|         sequencer_internal_state.phase = SEQUENCER_PHASE_RELEASE;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_phase_release(void) {
 | ||
|     if (timer_elapsed(sequencer_internal_state.timer) < SEQUENCER_PHASE_RELEASE_TIMEOUT + sequencer_internal_state.current_track * SEQUENCER_TRACK_THROTTLE) {
 | ||
|         return;
 | ||
|     }
 | ||
| #if defined(MIDI_ENABLE) || defined(MIDI_MOCKED)
 | ||
|     if (is_sequencer_step_on_for_track(sequencer_internal_state.current_step, sequencer_internal_state.current_track)) {
 | ||
|         process_midi_basic_noteoff(midi_compute_note(sequencer_config.track_notes[sequencer_internal_state.current_track]));
 | ||
|     }
 | ||
| #endif
 | ||
|     if (sequencer_internal_state.current_track > 0) {
 | ||
|         sequencer_internal_state.current_track--;
 | ||
|     } else {
 | ||
|         sequencer_internal_state.phase = SEQUENCER_PHASE_PAUSE;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| void sequencer_phase_pause(void) {
 | ||
|     if (timer_elapsed(sequencer_internal_state.timer) < sequencer_get_step_duration()) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     sequencer_internal_state.current_step = (sequencer_internal_state.current_step + 1) % SEQUENCER_STEPS;
 | ||
|     sequencer_internal_state.phase        = SEQUENCER_PHASE_ATTACK;
 | ||
| }
 | ||
| 
 | ||
| void matrix_scan_sequencer(void) {
 | ||
|     if (!sequencer_config.enabled) {
 | ||
|         return;
 | ||
|     }
 | ||
| 
 | ||
|     if (sequencer_internal_state.phase == SEQUENCER_PHASE_PAUSE) {
 | ||
|         sequencer_phase_pause();
 | ||
|     }
 | ||
| 
 | ||
|     if (sequencer_internal_state.phase == SEQUENCER_PHASE_RELEASE) {
 | ||
|         sequencer_phase_release();
 | ||
|     }
 | ||
| 
 | ||
|     if (sequencer_internal_state.phase == SEQUENCER_PHASE_ATTACK) {
 | ||
|         sequencer_phase_attack();
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| uint16_t sequencer_get_beat_duration(void) { return get_beat_duration(sequencer_config.tempo); }
 | ||
| 
 | ||
| uint16_t sequencer_get_step_duration(void) { return get_step_duration(sequencer_config.tempo, sequencer_config.resolution); }
 | ||
| 
 | ||
| uint16_t get_beat_duration(uint8_t tempo) {
 | ||
|     // Don’t crash in the unlikely case where the given tempo is 0
 | ||
|     if (tempo == 0) {
 | ||
|         return get_beat_duration(60);
 | ||
|     }
 | ||
| 
 | ||
|     /**
 | ||
|      * Given
 | ||
|      *  t = tempo and d = duration, both strictly greater than 0
 | ||
|      * When
 | ||
|      *  t beats / minute = 1 beat / d ms
 | ||
|      * Then
 | ||
|      *  t beats / 60000ms = 1 beat / d ms
 | ||
|      *  d ms = 60000ms / t
 | ||
|      */
 | ||
|     return 60000 / tempo;
 | ||
| }
 | ||
| 
 | ||
| uint16_t get_step_duration(uint8_t tempo, sequencer_resolution_t resolution) {
 | ||
|     /**
 | ||
|      * Resolution cheatsheet:
 | ||
|      * 1/2  => 2 steps per 4 beats
 | ||
|      * 1/2T => 3 steps per 4 beats
 | ||
|      * 1/4  => 4 steps per 4 beats
 | ||
|      * 1/4T => 6 steps per 4 beats
 | ||
|      * 1/8  => 8 steps per 4 beats
 | ||
|      * 1/8T => 12 steps per 4 beats
 | ||
|      * 1/16 => 16 steps per 4 beats
 | ||
|      * 1/16T => 24 steps per 4 beats
 | ||
|      * 1/32 => 32 steps per 4 beats
 | ||
|      *
 | ||
|      * The number of steps for binary resolutions follows the powers of 2.
 | ||
|      * The ternary variants are simply 1.5x faster.
 | ||
|      */
 | ||
|     bool     is_binary            = resolution % 2 == 0;
 | ||
|     uint8_t  binary_steps         = 2 << (resolution / 2);
 | ||
|     uint16_t binary_step_duration = get_beat_duration(tempo) * 4 / binary_steps;
 | ||
| 
 | ||
|     return is_binary ? binary_step_duration : 2 * binary_step_duration / 3;
 | ||
| }
 |