mirror of
				https://github.com/mfulz/qmk_firmware.git
				synced 2025-10-31 05:12:33 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			268 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			268 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "backlight.h"
 | |
| #include "backlight_driver_common.h"
 | |
| #include "progmem.h"
 | |
| #include <avr/io.h>
 | |
| #include <avr/interrupt.h>
 | |
| 
 | |
| // Maximum duty cycle limit
 | |
| #ifndef BACKLIGHT_LIMIT_VAL
 | |
| #    define BACKLIGHT_LIMIT_VAL 255
 | |
| #endif
 | |
| 
 | |
| #ifndef BACKLIGHT_PWM_TIMER
 | |
| #    define BACKLIGHT_PWM_TIMER 1
 | |
| #endif
 | |
| 
 | |
| #if BACKLIGHT_PWM_TIMER == 1
 | |
| #    define ICRx ICR1
 | |
| #    define TCCRxA TCCR1A
 | |
| #    define TCCRxB TCCR1B
 | |
| #    define TIMERx_COMPA_vect TIMER1_COMPA_vect
 | |
| #    define TIMERx_OVF_vect TIMER1_OVF_vect
 | |
| #    if defined(__AVR_ATmega32A__) // This MCU has only one TIMSK register
 | |
| #        define TIMSKx TIMSK
 | |
| #    else
 | |
| #        define TIMSKx TIMSK1
 | |
| #    endif
 | |
| #    define TOIEx TOIE1
 | |
| 
 | |
| #    define OCIExA OCIE1A
 | |
| #    define OCRxx OCR1A
 | |
| #elif BACKLIGHT_PWM_TIMER == 3
 | |
| #    define ICRx ICR1
 | |
| #    define TCCRxA TCCR3A
 | |
| #    define TCCRxB TCCR3B
 | |
| #    define TIMERx_COMPA_vect TIMER3_COMPA_vect
 | |
| #    define TIMERx_OVF_vect TIMER3_OVF_vect
 | |
| #    define TIMSKx TIMSK3
 | |
| #    define TOIEx TOIE3
 | |
| 
 | |
| #    define OCIExA OCIE3A
 | |
| #    define OCRxx OCR3A
 | |
| #else
 | |
| #    error Invalid backlight PWM timer!
 | |
| #endif
 | |
| 
 | |
| #ifndef BACKLIGHT_RESOLUTION
 | |
| #    define BACKLIGHT_RESOLUTION 0xFFFFU
 | |
| #endif
 | |
| 
 | |
| #if (BACKLIGHT_RESOLUTION > 0xFFFF || BACKLIGHT_RESOLUTION < 0x00FF)
 | |
| #    error "Backlight resolution must be between 0x00FF and 0xFFFF"
 | |
| #endif
 | |
| 
 | |
| #define BREATHING_SCALE_FACTOR F_CPU / BACKLIGHT_RESOLUTION / 120
 | |
| 
 | |
| // The idea of software PWM assisted by hardware timers is the following
 | |
| // we use the hardware timer in fast PWM mode like for hardware PWM, but
 | |
| // instead of letting the Output Match Comparator control the led pin
 | |
| // (which is not possible since the backlight is not wired to PWM pins on the
 | |
| // CPU), we do the LED on/off by oursleves.
 | |
| // The timer is setup to count up to 0xFFFF, and we set the Output Compare
 | |
| // register to the current 16bits backlight level (after CIE correction).
 | |
| // This means the CPU will trigger a compare match interrupt when the counter
 | |
| // reaches the backlight level, where we turn off the LEDs,
 | |
| // but also an overflow interrupt when the counter rolls back to 0,
 | |
| // in which we're going to turn on the LEDs.
 | |
| // The LED will then be on for OCRxx/0xFFFF time, adjusted every 244Hz,
 | |
| // or F_CPU/BACKLIGHT_RESOLUTION if used.
 | |
| 
 | |
| // Triggered when the counter reaches the OCRx value
 | |
| ISR(TIMERx_COMPA_vect) {
 | |
|     backlight_pins_off();
 | |
| }
 | |
| 
 | |
| // Triggered when the counter reaches the TOP value
 | |
| // this one triggers at F_CPU/ICRx = 16MHz/65536 =~ 244 Hz
 | |
| ISR(TIMERx_OVF_vect) {
 | |
| #ifdef BACKLIGHT_BREATHING
 | |
|     if (is_breathing()) {
 | |
|         breathing_task();
 | |
|     }
 | |
| #endif
 | |
|     // for very small values of OCRxx (or backlight level)
 | |
|     // we can't guarantee this whole code won't execute
 | |
|     // at the same time as the compare match interrupt
 | |
|     // which means that we might turn on the leds while
 | |
|     // trying to turn them off, leading to flickering
 | |
|     // artifacts (especially while breathing, because breathing_task
 | |
|     // takes many computation cycles).
 | |
|     // so better not turn them on while the counter TOP is very low.
 | |
|     if (OCRxx > ICRx / 250 + 5) {
 | |
|         backlight_pins_on();
 | |
|     }
 | |
| }
 | |
| 
 | |
| // See http://jared.geek.nz/2013/feb/linear-led-pwm
 | |
| static uint16_t cie_lightness(uint16_t v) {
 | |
|     if (v <= (uint32_t)ICRx / 12) // If the value is less than or equal to ~8% of max
 | |
|     {
 | |
|         return v / 9; // Same as dividing by 900%
 | |
|     } else {
 | |
|         // In the next two lines values are bit-shifted. This is to avoid loosing decimals in integer math.
 | |
|         uint32_t y   = (((uint32_t)v + (uint32_t)ICRx / 6) << 5) / ((uint32_t)ICRx / 6 + ICRx); // If above 8%, add ~16% of max, and normalize with (max + ~16% max)
 | |
|         uint32_t out = (y * y * y * ICRx) >> 15;                                                // Cube it and undo the bit-shifting. (which is now three times as much due to the cubing)
 | |
| 
 | |
|         if (out > ICRx) // Avoid overflows
 | |
|         {
 | |
|             out = ICRx;
 | |
|         }
 | |
|         return (uint16_t)out;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // rescale the supplied backlight value to be in terms of the value limit	// range for val is [0..ICRx]. PWM pin is high while the timer count is below val.
 | |
| static uint32_t rescale_limit_val(uint32_t val) {
 | |
|     return (val * (BACKLIGHT_LIMIT_VAL + 1)) / 256;
 | |
| }
 | |
| 
 | |
| // range for val is [0..ICRx]. PWM pin is high while the timer count is below val.
 | |
| static inline void set_pwm(uint16_t val) {
 | |
|     OCRxx = val;
 | |
| }
 | |
| 
 | |
| void backlight_set(uint8_t level) {
 | |
|     if (level > BACKLIGHT_LEVELS) level = BACKLIGHT_LEVELS;
 | |
| 
 | |
|     if (level == 0) {
 | |
|         if (OCRxx) {
 | |
|             TIMSKx &= ~(_BV(OCIExA));
 | |
|             TIMSKx &= ~(_BV(TOIEx));
 | |
|         }
 | |
|         backlight_pins_off();
 | |
|     } else {
 | |
|         if (!OCRxx) {
 | |
|             TIMSKx |= _BV(OCIExA);
 | |
|             TIMSKx |= _BV(TOIEx);
 | |
|         }
 | |
|     }
 | |
|     // Set the brightness
 | |
|     set_pwm(cie_lightness(rescale_limit_val(ICRx * (uint32_t)level / BACKLIGHT_LEVELS)));
 | |
| }
 | |
| 
 | |
| void backlight_task(void) {}
 | |
| 
 | |
| #ifdef BACKLIGHT_BREATHING
 | |
| #    define BREATHING_NO_HALT 0
 | |
| #    define BREATHING_HALT_OFF 1
 | |
| #    define BREATHING_HALT_ON 2
 | |
| #    define BREATHING_STEPS 128
 | |
| 
 | |
| static uint8_t  breathing_halt    = BREATHING_NO_HALT;
 | |
| static uint16_t breathing_counter = 0;
 | |
| 
 | |
| static uint8_t breath_scale_counter = 1;
 | |
| /* Run the breathing loop at ~120Hz*/
 | |
| const uint8_t breathing_ISR_frequency = 120;
 | |
| 
 | |
| static bool breathing = false;
 | |
| 
 | |
| bool is_breathing(void) {
 | |
|     return breathing;
 | |
| }
 | |
| 
 | |
| #    define breathing_interrupt_enable() \
 | |
|         do {                             \
 | |
|             breathing = true;            \
 | |
|         } while (0)
 | |
| #    define breathing_interrupt_disable() \
 | |
|         do {                              \
 | |
|             breathing = false;            \
 | |
|         } while (0)
 | |
| 
 | |
| #    define breathing_min()        \
 | |
|         do {                       \
 | |
|             breathing_counter = 0; \
 | |
|         } while (0)
 | |
| #    define breathing_max()                                                           \
 | |
|         do {                                                                          \
 | |
|             breathing_counter = get_breathing_period() * breathing_ISR_frequency / 2; \
 | |
|         } while (0)
 | |
| 
 | |
| void breathing_enable(void) {
 | |
|     breathing_counter = 0;
 | |
|     breathing_halt    = BREATHING_NO_HALT;
 | |
|     breathing_interrupt_enable();
 | |
| }
 | |
| 
 | |
| void breathing_pulse(void) {
 | |
|     if (get_backlight_level() == 0)
 | |
|         breathing_min();
 | |
|     else
 | |
|         breathing_max();
 | |
|     breathing_halt = BREATHING_HALT_ON;
 | |
|     breathing_interrupt_enable();
 | |
| }
 | |
| 
 | |
| void breathing_disable(void) {
 | |
|     breathing_interrupt_disable();
 | |
|     // Restore backlight level
 | |
|     backlight_set(get_backlight_level());
 | |
| }
 | |
| 
 | |
| void breathing_self_disable(void) {
 | |
|     if (get_backlight_level() == 0)
 | |
|         breathing_halt = BREATHING_HALT_OFF;
 | |
|     else
 | |
|         breathing_halt = BREATHING_HALT_ON;
 | |
| }
 | |
| 
 | |
| /* To generate breathing curve in python:
 | |
|  * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
 | |
|  */
 | |
| static const uint8_t breathing_table[BREATHING_STEPS] PROGMEM = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 | |
| 
 | |
| // Use this before the cie_lightness function.
 | |
| static inline uint16_t scale_backlight(uint16_t v) {
 | |
|     return v / BACKLIGHT_LEVELS * get_backlight_level();
 | |
| }
 | |
| 
 | |
| void breathing_task(void) {
 | |
|     // Only run this ISR at ~120 Hz
 | |
|     if (breath_scale_counter++ == BREATHING_SCALE_FACTOR) {
 | |
|         breath_scale_counter = 1;
 | |
|     } else {
 | |
|         return;
 | |
|     }
 | |
|     uint16_t interval = (uint16_t)get_breathing_period() * breathing_ISR_frequency / BREATHING_STEPS;
 | |
|     // resetting after one period to prevent ugly reset at overflow.
 | |
|     breathing_counter = (breathing_counter + 1) % (get_breathing_period() * breathing_ISR_frequency);
 | |
|     uint8_t index     = breathing_counter / interval;
 | |
|     // limit index to max step value
 | |
|     if (index >= BREATHING_STEPS) {
 | |
|         index = BREATHING_STEPS - 1;
 | |
|     }
 | |
| 
 | |
|     if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) || ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1))) {
 | |
|         breathing_interrupt_disable();
 | |
|     }
 | |
| 
 | |
|     // Set PWM to a brightnessvalue scaled to the configured resolution
 | |
|     set_pwm(cie_lightness(rescale_limit_val(scale_backlight((uint32_t)pgm_read_byte(&breathing_table[index]) * ICRx / 255))));
 | |
| }
 | |
| 
 | |
| #endif // BACKLIGHT_BREATHING
 | |
| 
 | |
| void backlight_init_ports(void) {
 | |
|     // Setup backlight pin as output and output to on state.
 | |
|     backlight_pins_init();
 | |
| 
 | |
|     // I could write a wall of text here to explain... but TL;DW
 | |
|     // Go read the ATmega32u4 datasheet.
 | |
|     // And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
 | |
| 
 | |
|     // TimerX setup, Fast PWM mode count to TOP set in ICRx
 | |
|     TCCRxA = _BV(WGM11); // = 0b00000010;
 | |
|     // clock select clk/1
 | |
|     TCCRxB = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
 | |
|     ICRx   = BACKLIGHT_RESOLUTION;
 | |
| 
 | |
|     backlight_init();
 | |
| 
 | |
| #ifdef BACKLIGHT_BREATHING
 | |
|     if (is_backlight_breathing()) {
 | |
|         breathing_enable();
 | |
|     }
 | |
| #endif
 | |
| }
 | 
